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Coalgebras

Definition
Given a category C, and an endofunctor F : C → C, a pair (A, f) of an object A and a
morphism f : A → F(A) is called an (F-)coalgebra.

Given two coalgebras (A, fA) and (B, fB), h : A → B is a coalgebra morphism between
(A, fA) and (B, fB) if the following commutes:

A B

F(A) F(B)

fA

h

fB

F(h)

Figure 1: Coalgebra morphism compatibility

We write CoAlg(F) for the category of F-coalgebras and coalgebra morphisms.

2



Coalgebras

Definition
Given a category C, and an endofunctor F : C → C, a pair (A, f) of an object A and a
morphism f : A → F(A) is called an (F-)coalgebra.
Given two coalgebras (A, fA) and (B, fB), h : A → B is a coalgebra morphism between
(A, fA) and (B, fB) if the following commutes:

A B

F(A) F(B)

fA

h

fB

F(h)

Figure 1: Coalgebra morphism compatibility

We write CoAlg(F) for the category of F-coalgebras and coalgebra morphisms.

2



Coalgebras and Coalgebraic Semantics

Examples

• Over Set, the powerset functor P : CoAlg(P) = all Kripke frames (we associate to
each point its successors).

• Over Stone, the Vietoris endofunctor V : CoAlg(V) = all Modal Spaces.

Definition
Let X be a Stone space. V(X) is the set of all closed subsets of X, with a subbase
(hit-or-miss topology) given by:

[U] = {C ∈ V(X) : C ⊆ U} and 〈V〉 = {C ∈ V(X) : C ∩ V 6= ∅},

where U, V are clopen in X.

3



Coalgebras and Coalgebraic Semantics

Examples

• Over Set, the powerset functor P : CoAlg(P) = all Kripke frames (we associate to
each point its successors).

• Over Stone, the Vietoris endofunctor V : CoAlg(V) = all Modal Spaces.

Definition
Let X be a Stone space. V(X) is the set of all closed subsets of X, with a subbase
(hit-or-miss topology) given by:

[U] = {C ∈ V(X) : C ⊆ U} and 〈V〉 = {C ∈ V(X) : C ∩ V 6= ∅},

where U, V are clopen in X.

3



Coalgebras and Coalgebraic Semantics

Examples

• Over Set, the powerset functor P : CoAlg(P) = all Kripke frames (we associate to
each point its successors).

• Over Stone, the Vietoris endofunctor V : CoAlg(V) = all Modal Spaces.

Definition
Let X be a Stone space. V(X) is the set of all closed subsets of X, with a subbase
(hit-or-miss topology) given by:

[U] = {C ∈ V(X) : C ⊆ U} and 〈V〉 = {C ∈ V(X) : C ∩ V 6= ∅},

where U, V are clopen in X.

3



Positive Modal Logic

If we restrict to the positive fragment of modal logic, something similar; look at the
language:

L = ∧ | ∨ | □ |> | ⊥.

The positive fragment of K can be axiomatised over positive logic by adding the
axioms □(a ∧ b) = □a ∧ □b and □> = >.

This can be interpreted over positive Kripke frames: triples (P,≤, R) where:

1. (P,≤) is a poset;
2. (P, R) is a Kripke frame;
3. R = ≤ ◦R◦ ≤.

Topologize: Priestley spaces with a closed relation R satisfying the compatibility
condition.
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Coalgebraic Semantics of Positive Modal Logic

Just like in the classical case, there are analogous constructions providing coalgebraic
semantics:

Theorem
1. Given a poset (P,≤) we can consider (Up(P),⊇); this is an endofunctor, and
coalgebras for this functor are precisely the positive Kripke frames;

2. Given a Priestley space (X,≤) we can associate to it V↑(X), the set of closed
upsets, with the hit-or-miss topology on clopen upsets; this is an endofunctor,
and coalgebras for this functor are precisely the Priestley spaces with a closed
relation satisfying the compatibility.

Proof.
Given a Priestley space with a closed relation (X,≤, R), we can consider the coalgebra:

pR : X → V↑(X)
x 7→ R[x].

Conversely, if p : X → V↑(X), define the relation:

xRy ⇐⇒ y ∈ p(x).

Similar in the case of the powerset.
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Intuitionistic Modal Logic

In some settings it is natural to want to strengthen positive to intuitionistic modal
logic. Consider the following language:

L = ∧ | ∨ | → | □ | > | ⊥.

This can be axiomatised over IPC by adding the same two axioms, □(a∧ b) = □a∧□b
and □> = >.

This also admits a natural semantics over positive Kripke frames!

By topologizing it, to obtain a complete semantics for the intuitionistic part, we need
to consider Esakia spaces with a closed relation R satisfying the compatibility
R = ≤ ◦ R ◦ ≤.
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A Coalgebraic Puzzle

A natural conjecture: the coalgebras for Up over the category of Posets with
≤-bounded morphisms are the intuitionistic Kripke frames; the coalgebras for V↑ over
the category of Esakia spaces are the Esakia spaces with a closed relation.

Problem (Litak, 2014): If we are in the category of Esakia spaces, we must have the
coalgebra map

p : X → V↑(X)

also be a p-morphism. This imposes strange, and somewhat artificial, conditions on
the relation.

de Groot and Pattinson (2018) circumvent this by using dialgebras.

Our contribution: We propose a solution to this in specific cases by working with a
different endofunctor.
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From Priestley to Esakia



Intuitionistic Lifting

When it comes to Esakia spaces, our key technical tool lies in the following:

Theorem (A., 2024)
The inclusion I : Esa → Pries of Esakia spaces in Priestley spaces admits a right adjoint
VG .

The construction of VG works through a step-by-step construction. It is dual to the
free Heyting algebra generated by a distributive lattice, and the step-by-step approach
layers infinitely many implications.

Given X a Priestley space, the elements of VG(X) have the form:

(x, C0, C1, ..., Cn, ...)

where C0 is a closed and rooted subset of X, C1 is a rooted and further special subset
of V(X), and so on.
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Intuitionistic Lifting (cont.d)

What about the case of Kripke frames? Here we make an additional restriction:

Definition
Let (X,≤) be a poset. We say that X is image-finite if for each x, the set ↑x = {y : x ≤
y} is finite.
ImFinPos is the category of image-finite posets with ≤-bounded morphisms.

Then we have the following:

Theorem (A., 2024)
The inclusion I : ImFinPos → Pos admits a right adjoint PG .

Given (X,≤), the elements of PG(X) are sequences:

(x, C0, C1, ..., Cn, ...).

where Ci are rooted, finite subsets.
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Coalgebras for Intuitionistic Modal
Logic



Lifting Positive to Intuitionistic Representations

A special consequence of the above result is the following:

Proposition

Let X be an Esakia space, Y a Priestley space, and assume that f : X → Y is a Priestley
morphism. Then there is a unique Esakia morphism f : X → VG(Y), extending f.
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Lifting Positive to Intuitionistic Representations

Theorem (Main Result on Esakia Spaces)
The functor VG(V↑(−)) provides a coalgebraic representation of Esakia spaces with a
closed relation.

Proof.
Given an Esakia space (X,≤, R), consider its positive coalgebra representation:

pR : X → V↑(X)

Using the above result, this lifts to:

p̃R : X → VG(V(X)).

Conversely, if g : X → VG(V↑(X)) is a coalgebramap, then π0g : X → V↑(X) is a coalgebra,
which corresponds to an Esakia space with a closed relation.
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Lifting Positive to Intuitionistic Representations

Similarly, we have:

Theorem (Main Result on Image-Finite Posets)
The functor PG(Up(−)) provides a coalgebraic representation of Image-Finite intuition-
istic Kripke frames.
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Consequences and Further Remarks

We have the following consequences of the main results:

1. Bisimulations for intuitionistic Kripke frames are simply the positive bisimulations
which are also bisimulations for ≤;

2. All these bisimulations are bisimulations in the coalgebraic sense;
3. Using this we can provide a representation of the free intuitionistic modal algebra
over a set of generators. This crucially relies (even in the finitely generated case)
in VG being an endofunctor on Priestley spaces.

Can we get similar results for all Kripke frames?

In a recent preprint, it is shown that Posp is not complete; hence the inclusion
Posp → Pos cannot have a right adjoint (since these preserve limits). So in this sense
our result is “best possible”.
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Coalgebraic Intuitionistic Logic

The approach exposed here is quite flexible, and can be adapted to other logics. We
provide an example before turning to the general case.

The logic IPCN,□ is defined as IPC□ , but omitting the normality axioms.

An intuitionistic neighbourhood frame is a triple (X,≤,N) of a poset together with a
monotone map N : X → P(Up(X)), where P(−) is ordered by inclusion. The
morphisms between such frames are functions f : X → X′ satisfying

a′ ∈ N′(f(x)) ⇐⇒ f−1(a′) ∈ N(x)

for all x ∈ X and a′ ⊆ X′ . We denote by ImFinN the category of image-finite
neighbourhood □-frames.

Theorem
There is an equivalence between CoAlg(PG(P(Up(−)))) and the category ImFinN.
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Intuitionistic Liftings in general

Definition
Let F : Pries → Pries be an endofunctor on the category of Priestley spaces; we define
F∗ : Esa → Esa: the intuitionistic lifting of F to be the functor obtained by composition
in the following diagram:

Pries Pries

Esa Esa

F

PG

F∗

I

Figure 2: Intuitionistic Lifting of functor F

The results presented so far indicate a way to move from positive distributive logics to
intuitionistic logics, using the mechanism of intuitionistic lifting.

We leave a systematic study of the properties of intuitionistic lifting of functors, in a
coalgebraic setting, for further work.

17



Intuitionistic Liftings in general

Definition
Let F : Pries → Pries be an endofunctor on the category of Priestley spaces; we define
F∗ : Esa → Esa: the intuitionistic lifting of F to be the functor obtained by composition
in the following diagram:

Pries Pries

Esa Esa

F

PG

F∗

I

Figure 2: Intuitionistic Lifting of functor F

The results presented so far indicate a way to move from positive distributive logics to
intuitionistic logics, using the mechanism of intuitionistic lifting.

We leave a systematic study of the properties of intuitionistic lifting of functors, in a
coalgebraic setting, for further work.

17



Intuitionistic Liftings in general

Definition
Let F : Pries → Pries be an endofunctor on the category of Priestley spaces; we define
F∗ : Esa → Esa: the intuitionistic lifting of F to be the functor obtained by composition
in the following diagram:

Pries Pries

Esa Esa

F

PG

F∗

I

Figure 2: Intuitionistic Lifting of functor F

The results presented so far indicate a way to move from positive distributive logics to
intuitionistic logics, using the mechanism of intuitionistic lifting.

We leave a systematic study of the properties of intuitionistic lifting of functors, in a
coalgebraic setting, for further work.

17



Thank you!
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