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Non-Standard Rules



Motivation

Non-standard Π2-rules have been used often for axiomatisation: examples include
Gabbay’s rule:

∀p ((□p → p) ∨ ϕ)
ϕ

The Takeuti-Titani rule:

∀r (g → ((p → r) ∨ (r → q) ∨ c))
g → (p → q) ∨ c

The rules of the Strict Implication Calculus:

∀p ((p⇝ p) ∧ (ϕ⇝ p) ∧ (p⇝ ψ)) → χ

(ϕ⇝ ψ) → χ.

Warning: Throughout the universal quantifiers are not part of our language; they
signal which variable is forbidden from appearing elsewhere in the formulas.
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Admissibility of Pi2-Rules

Main applications: axiomatisations, proving their admissibility. Recent work by
Bezhanishvili et.al (2023) developed a systematic method for recognising some of
these rules, with syntactic specifications.

This syntactic specification is forcibly classical, and hence left out several interesting
kinds of rules, such as Takeuti-Titani rule.

In recent work (A., 2024, submitted), I developed a framework to discuss Π2-rules,
where they are shown to generalize usual rules. This raised the question of how one
can recognise the admissibility of such rules.
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Pi2-Rules in General

We work with an algebraizable logic ⊢ in a language L, where its equivalent algebraic
semantics K is a variety. We also fix a Hilbert style calculus for ⊢L .

Definition
Let Γ = {ϕi(p, q) : i ≤ n} and ψ(q) be formulas of L. The Π2-rule associated with this
sequence of formulas is denoted ∀pΓ/2ψ and displayed as:

∀p (ϕ0(p, q), ..., ϕn(p, q))
ψ(q).

We write Fc(Γ) = {p} for the bound context.
Whenever the bound context is empty, the rule is referred to as a standard or Π1-rule.

5



Pi2-Rules in General

We work with an algebraizable logic ⊢ in a language L, where its equivalent algebraic
semantics K is a variety. We also fix a Hilbert style calculus for ⊢L .

Definition
Let Γ = {ϕi(p, q) : i ≤ n} and ψ(q) be formulas of L. The Π2-rule associated with this
sequence of formulas is denoted ∀pΓ/2ψ and displayed as:

∀p (ϕ0(p, q), ..., ϕn(p, q))
ψ(q).

We write Fc(Γ) = {p} for the bound context.
Whenever the bound context is empty, the rule is referred to as a standard or Π1-rule.

5



Derivations using Π2-rules

Definition

Let Σ be a set of Π2-rules. Given a formula ϕ we say that ϕ is derivable using the Π2-
rules in Σ, and write ⊢L⊕Σ ϕ, provided there is a sequence ψ0, ..., ψn of formulas such
that:
• ψn = ϕ;
• For each ψi we have that either:

1. ψi is an instance of an axiom of ⊢L or,
2. ψi is obtained using a rule from ⊢L , from some previous ψj0 , ..., ψjk or,
3. ψi = χ(ξ/q) and ψjk = µk(r/p, ξ/q) for 0 ≤ jk < i ≤ n, where

• r is a renaming of p, away from ξ, i.e., a set of fresh variables not ocurring in ξ;
• ∆ = {µk(p, q) : k ∈ {0, ...,m}};
• ∀p∆/2χ ∈ Σ;
• χ = χ(q).
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Admissibility



Admissibility in Π2-rules

Definition
Let Γ/2ϕ be a Π2-rule. We say that the rule Γ/2ϕ is admissible in ⊢L if for all ψ:

⊢L⊕Γ/2ϕ ψ =⇒ ⊢L ψ.

Remark: If ∀pΓ/2ϕ is a Π2-rule and C = Fc(Γ), then ∀pΓ/2ϕ is admissible over ⊢L if
and only if whenever σ is a C-invariant substitution and we have ⊢L σ(Γ), then we
have also ⊢L σ(ϕ).
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Admissibility in Π2-rules

Given a logic ⊢, by the ⊢-admissibility problem for Π2-rules we mean the problem of
determining, given a triple (Γ, ϕ, p), whether the Π2-rule ∀pΓ/2ϕ is admissible over ⊢L .

The ⊢-admissibility problem for Π1-rules need not be decidable. It is decidable for a
substantial number of logical systems encountered in practice:

1. S4, S5;
2. IPC;
3. Lax logic, amongst others.

Our contribution is identifying a number of sufficient conditions to reduce the
problem of Π2-rule admissibility to that of Π1-rule admissibility.
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Main Result on Admissibility

Definition

We say that a logic ⊢ has the Maehara interpolation property if for any finite sets of
formulas Σ(p, q),∆(q, r),Σ′(p, q) in the language L the following holds:

Σ(p, q) ∪∆(q, r) ⊢ Σ′(p, q) =⇒ ∃Π(q) such that ∆(q, r) ⊢ Π(q)
and Σ(p, q) ∪ Π(q) ⊢ Σ′(p, q)

Definition

We say that a logic ⊢ has right uniform deductive interpolation if for any finite set of
formulas Σ(p, q) there exists a finite set of formulas Π(q) such that:for any finite set of
formulas ∆(q, r)

Σ(p, q) ⊢ ∆(q, r) ⇐⇒ Π(q) ⊢ ∆(q, r).

10



Main Result on Admissibility

Definition

We say that a logic ⊢ has the Maehara interpolation property if for any finite sets of
formulas Σ(p, q),∆(q, r),Σ′(p, q) in the language L the following holds:

Σ(p, q) ∪∆(q, r) ⊢ Σ′(p, q) =⇒ ∃Π(q) such that ∆(q, r) ⊢ Π(q)
and Σ(p, q) ∪ Π(q) ⊢ Σ′(p, q)

Definition

We say that a logic ⊢ has right uniform deductive interpolation if for any finite set of
formulas Σ(p, q) there exists a finite set of formulas Π(q) such that:for any finite set of
formulas ∆(q, r)

Σ(p, q) ⊢ ∆(q, r) ⇐⇒ Π(q) ⊢ ∆(q, r).

10



Main Result on Admissibility (cont.d)

Definition

We say that ⊢ has left-finitary uniform deductive interpolation if for any finite set of
formulas ∆(q, r) there is a finite collection of finite sets of formulas Θ1(q), . . . ,Θn(q)
such that:

(i) Θi(q) ⊢ ∆(q, r) for each i ≤ n and
(ii) for any p and Σ(p, q),

Σ(p, q) ⊢ ∆(q, r) =⇒ Σ(p, q) ⊢ Θi(q)
for some i ≤ n.

When there is a single Θi this is referred to as left-uniform deductive interpolation
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Main Result (cont.d)

Theorem

Suppose that ⊢ has
1. the Maehara Interpolation Property;
2. Right-Uniform Deductive Interpolation;
3. Left-Finitary Deductive Uniform Interpolation.

Then if both ⊢ itself and the ⊢-admissibility problem for standard rules are decidable,
so is the ⊢-admissibility problem for Π2-rules.

Many examples coming from logics with uniform interpolation: S5,GL,Grz, IPC, LC and
lax logic.

Further examples given by (∧,⊤,→)-fragment of IPC, and the (ℓ,∧,⊤,→)-fragment
of Lax Logic.
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Unification with Simple Variable Restrictions

Our main tool lies in a variant of a unification problem.

A substitution σ is said to be C-invariant iff it maps the p ∈ C into themselves and the
q ̸∈ C into terms σ(q) not containing C.

Definition
Given an equational theory E, and a finite set of variables C, an E-unification problem
with simple variable restriction (briefly a C-unification problem) is a finite set of pairs
of terms in the variables p (with C ⊆ p):

(PC) (ϕ1(p), ψ1(p)), ..., (ϕk(p), ψk(p));

a solution to such a problem or a C-unifier is a C-invariant substitution σ of domain
FmL(p) such that

σ(ϕ1) =E σ(ψ1), ..., σ(ϕk) =E σ(ψk).
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C-unifiers

We can compare C-unifiers: τ ≤ σ if there is a θ such that τ = θ ◦ σ.

A C-unification basis from this set is a subset B ⊆ UsvrE (PC) such that for every
σ′ ∈ UsvrE (PC) there is σ ∈ B such that σ′ ≤C σ holds; a most general C-unifier (C-mgu)
of (PC) is a σ ∈ UsvrE (PC) such that {σ} is a C-unification basis.

Definition

We say that E has finitary simple-variable-restriction (svr) unification type iff every C-
unification problem (PC) has a finite C-unification basis; E has unitary scr-unification
type iff every C-unification problem (PC) has a C-mgu.

Proposition

Assume that ⊢S is decidable. Then if E has finitary svr-unification type (with computable
finite C-unification bases), then the ⊢-admissibility problem for Π2-rules is decidable
too.
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Algebraic Representation of the Problem

Given a finitely presented E-algebra A, we write it as A∗ when we see it in the
opposite category E (thus, A∗ is just a formal dual of A); in particular F(X)∗ is the
formal dual of F(X), the free algebra on the finitely many generators X. Given an object
B∗ in E, we write Subr(B∗) for the set of regular subobjects.

An E-unification problem with simple variable restrictions is a pair (A, C = p), such
that A∗ ∈ Subr(F(X)∗ × F(C)∗). A solution is a homomorphism σ : F(X) → F(Z), such
that σ∗ × 1 factors such that Figure 1 commutes:

F(X)∗ × F(C)∗ F(Z)∗ × F(C)∗

A∗

σ∗×1

Figure 1: Solution to Unification Problem with Simple Variable Restrictions

This ‘algebraic’ approach to C-unification is equivalent to the ‘symbolic’ approach.
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Equivalents of the interpolation properties

The interpolation properties introduced have algebraic equivalents:

1. Maehara interpolation property⇝ “Injections are Transferable”;
2. Right Uniform Deductive Interpolation⇝ Coherence of the variety K;
3. Together, these properties imply that Algopfp (E) is an r-regular category.

Definition
Let C be a category with finite limits. Given T ∈ Subr(X×Z), we say that a finite collection
B1, ...,Bn ∈ Subr(Z) is a ∀X-factorization of T if:
1. π−1

Z (Bi) ≤ T for each i ≤ n;
2. for every C ≤ Z, such that π−1

Z (C) ≤ T, there is some i ≤ n such that C ≤ Bi .
We say that C has the ∀-factorization property if for all objects X, Z and any S ∈ Subr(X×
Z), there is a ∀X-factorization of S.

Proposition

The logic ⊢ has left-finitary deductive interpolation if and only if Algopfp (E) has the ∀-
factorization property.
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Outline of the Proof

Theorem

Suppose that K satisfies (IT), Coherence and ∀-factorization property. Then:
1. If E has finitary unification type, then it has finitary unification type for the
problem with simple variable restrictions.

2. If E has unitary unification type and uniform interpolation, then E has unitary type
for the problem with simple variable restrictions.

3. If E-unification is decidable and ∀-factorizations are computable, then
E-unification with simple constant restrictions is decidable as well.

Proof.
(Idea) We show that in these conditions, a basis of C-unifiers can be constructed from
a larger base of unifiers.

We then need to show that substitutions still commute with finitary ∀-decompositions
– a generalization of the Beck-Chevalley property for these collections (this is the main
technical fact necessary for the result).
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Examples

Our method allows us to show the admissibility of the Takeuti-Titani rule using
bisimulation semantics. In fact, under this perspective, its admissibility is trivial: the
uniform interpolant of the antecedent is the consequent.

We can also use our method to disprove uniform interpolation: in the theory of
implicative semilattices the problem

((x → z) ∧ (y → z) → z,⊤)

has two incomparable C-unifiers. If it had uniform interpolation, this would be
impossible.
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Examples

A key example is the case of (∧,→, ℓ)-fragment of Lax logic. One of our contributions
in this paper is to give a proof that this logic is in the conditions of the theorem.

Namely, we show that such subalgebras of finite projective algebras of this system are
again projective.
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Open questions

The present work leaves open several interesting lines of questioning:

1. Simple variable restrictions is an instance of the more complex linear variable
restriction problems. It would be interesting to understand how stronger rules
relate to such unification problems. This can have applications in positive model
theory.

2. Some well-known examples of logics with decidable admissibility problems fall
outside of the scope of the present analysis – notably the system S4. It would be
interesting to study the simple variable unification type of this logic, and the
associated admissibility problem.
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Thank you!
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