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What are Π2-rules?



Motivation

Gabbay (1981): axiomatising irreflexive frames. Idea: introduce the following rule, for p
not occuring in ϕ:

¬(p → ♢p) → ϕ ⊢ ϕ.

Such rules were later studied for e.g. in:

1. (Takeuti and Titani, 1984): axiomatising first-order Gödel Logic;
2. (Venema, 2003): generalization of Gabbay’s rules, (“anti-axioms”);
3. (Bezhanishvili2 , Santoli, Venema, 2017): axiomatising the strict implication
calculus.

4. (Bezhanishvili, Carai, Ghilardi and Landi, 2023): first analysis of admissibility of
these rules; admissibility basis for the strict implication calculus.

My goal:

• Provide an algebraic/model theoretic framework to analyse these rules similar to
varieties/quasivarieties.

• Use it to study these rules for Gödel Algebras.

Will focus on single-conclusion consequence relations.
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Defining a Π2-rule

L is a modal/intuitionistic logic of your preference (for simplicity).

Definition
A Π2-rule is a triple (Γ, F, ϕ) such that:
1. Γ ∪ {ϕ} is a set of L-formulas;
2. F is a (possibly empty) set of propositional variables occurring in Γ but not in ϕ.

,When F is omitted, we write F(Γ) to mean this set F.

Suggestively:
∀pp∈FΓ ⊢ ϕ.

Definition
If (A, v) is an algebraicmodel, we write (A, v) ⊨ ∀pp∈FΓ ⊢ ϕ tomean: if for all valuations
v′ differing from v at most in F, v′(ψ) = 1 for each ψ ∈ Γ, then v(ϕ) = 1.
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Π2-rule Systems and Inductive Rule
Classes



Π2-rule systems

One can develop the notion of a “Π2-rule system” by extrapolating from the standard
case. We say that Σ is such if:

• (Monotonicity) ∀pp∈FΓ ⊢ ϕ ∈ Σ then for any finite Γ′ and S, we have
∀pp∈S∪F(Γ, Γ′) ⊢ ϕ ∈ Σ;

• (Bound Structurality) if ∀pp∈FΓ ⊢ ψ ∈ Σ and σ is a substitution leaving all
variables in F fixed, and such that p does not occur in σ(q) for q /∈ F, then
∀pp∈Fσ[Γ] ⊢ σ(ψ) ∈ Σ

• (Renaming) If ∀p, qp∈FΓ ⊢ ϕ ∈ Σ, then if Γ′ is Γ with all instances of q replaced by
r, ∀p, rp∈FΓ′ ⊢ ϕ ∈ Σ.

• (Strong Reflexivity) For all sets Γ, and F a set of propositional letters, and
p0, ..., pn ∈ F, and ϕ ∈ Γ, we have ∀qq∈FΓ ⊢ ϕ[ψ/p] ∈ Σ, for ψi formulas not
containing any variables from F.

• (Rule Cut) If F = {p0, ..., pn} and G = {q0, ..., qk} and Γ(p, r) is a collection of
formulas, and ∀pp∈FΓ ⊢ µi(q, r) ∈ Σ where ∆ = {µi(q, r) : i ≤ n} is a finite set of
formulas; and ∀qq∈G∆ ⊢ ϕ ∈ Σ is a rule, where no variable in G appears free in Γ,
then ∀pp∈FΓ ⊢ ϕ ∈ Σ.
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Proofs with Π2-Rule Systems

Taking a calculus like IPC we can add non-standard rules, allowing us to use usual
algebraic logic tools.

Using a Lindenbaum-Tarski style argument we can prove:

Theorem (Completeness Theorem for Inductive rules)

Let Σ be a Π2-rule system. Suppose that Γ/2ϕ /∈ Σ. Then there is some algebra H, such
that H ⊨ Σ, and H ⊭ Γ/2ϕ.

This raises the question: what is a “variety” or a “quasivariety” in this setting?
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Inductive Classes

Definition
Given two algebrasA ≤ B, we say that this is a ∀-subalgebra if for each equation ϕ(x, y)
in the language L and a ∈ A:

A ⊨ ∀xϕ(x, a) =⇒ B ⊨ ∀xϕ(x, a).

A class K of algebras is called an inductive class if it is closed under ultraproducts,
products and ∀-subalgebras.

For example: any subdirect product is a ∀-subalgebra.
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Model Theoretic Considerations

With some minimal adaptations from Mal’tsev’s theorem we get:

Theorem
Let K be a class of algebras. Then the following are equivalent:
1. K is an inductive rule class.
2. K is axiomatised by (∀∃-Special Horn) first-order formulas of the form:

∀x(∀y(
n∧
i=1
ϕi(x, y)) → ψ(x))

3. K is IS∀PUPfin(K′) for some class of algebras K′ .
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Algebraic Completeness, Completed

Using these results, we can prove a basic algebraic completeness result:

Corollary
There is a dual isomorphism, Ind, between the lattice of Π2-rule systems, and the lattice
of inductive rule classes of L-algebras.

Upshot: We can use tools of universal algebra and algebraic logic to look at the
structure of Π2-rules and logically interesting questions herein.

As a case study we concentrate on Gödel algebras:

LC := IPC⊕ (p → q ∨ q → p).
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Π2-Rules of Gödel Algebras

Example
The density rule of Takeuti and Titani:

∀q(p → q) ∨ (q → r) ∨ c ⊢ (p → r) ∨ c.

This rule corresponds over linear Heyting algebras H (i.e., chains) to the chains being
dense.

Example
Given the formulas bcn

bcn = p0 ∨ p0 → p1 ∨ ... ∨ p0 ∧ ... ∧ pn−1 → pn.

We can consider the rule ∀p0, ..., pnbcn ⊢ ⊥.
This rule works like an anti-axiom: it corresponds to the dual Kripke frame having at
least n+ 1 points.
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Inductive Classes of Gödel Algebras

We can analyse the lattice of inductive classes of Gödel algebras. The variety of all
Gödel algebras is precisely the dual to LC.

1. (Gödel, 1933, Dummett, 1959) – The lattice of subvarieties of Gödel algebras is
countable with order type ω + 1.

2. (Dzik & Wronski, 1973) – Every subquasivariety of Gödel algebras is already a
variety.

3. (Beckmann, Goldstern, Preining, 2008) – There are countably many first-order
Gödel logics.

4. (Baasz, 1998) – On the other hand, when looking at potentially infinitary systems
of Gödel logic, there are continuum many such systems.
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Inductive Classes of Gödel Algebras

What about inductive classes?

Let X = {[n] : n ∈ ω} be a set containing all n-element chains.

Let λn be the equation defining the variety generated by the n-element chain. Then
for each chain [m], [m] ⊨ λn if and only if m ≤ n.

Theorem
For each subset Y ⊆ X, IR(Y) forms a distinct inductive rule class. Hence there are 2ℵ0
many inductive rule classes.

Proof: Suppose that Y ̸= Z. Let [n] ∈ Y /∈ Z. Assume that [n] ∈ IR(Z). Then [n] is a a
∀-subalgebra of an ultraproduct of finite products of elements from Z (by model
theoretic completeness).

Say that [n] ≤∀
∏

i∈IHi/U; then
∏

i∈IHi/U ⊨ λn because it a ∀-subalgebra. By Los
theorem, then for ultrafilter many i, Hi ⊨ λn . So if Hi ∼=

∏n
i=1[ki] we have that

[ki] ⊨ λn , so ki ≤ n. Since [n] /∈ Z, then for k = max({k ∈ Z : k < n}) we have that
[ki] ⊨ λk . But then Hi ⊨ λk . Since this holds for ultrafilter many i,

∏
i∈IHi/U ⊨ λk ,

which implies that [n] ⊨ λk , a contradiction.
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Inductive Classes of Gödel Algebras

In fact, one can construct explicit rules separating, for instance [3] from [2]:

∀q(¬¬q → q ∨ p) ⊢ p.

This rule can be falsified in 2, by taking p = 0, but it cannot fail in 3. The problem here
seems to be that finite algebras become very separated when looking at inductive
classes.

One might then expect that the structure of such classes is hopeless. But it seems it is
still possible to say interesting things.
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Some Final Remarks

As an example, the original problem of admissibility can be shown to be decidable for
rules over LC. This essentially relies on the existence of a model completion.

More precisely we can even characterise all extensions of LC which are “inductively
structurally complete” – where all Π2-rules which are admissible are derivable:

Theorem
An inductive rule class is inductively structurally complete if and only if it is of the form
IR([n]) or IR([Q]).

This turns out to depend on a nice structure theorem for algebras and ∀-subalgebras.
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Future Work

Some natural questions follow, both in the seting of LC and elsewhere:

• How do model completions interact with these rules?
• What can be said in general about admissibility of Π2-rules?
• How do these rules relate to other interesting phenomena like implicit
connectives?
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Thank you!
Questions?
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