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Free Algebras of Logic



Motivation

Mantra
If L is a logic, with a corresponding class of algebras K, the free algebras of K are alge-
braic versions of canonical models; they encode most of the interesting properties of L.

Example
1. Free Boolean algebras are very well-understood: for a set X they can be described
as the duals of

2X

understood as the X-fold product of the discrete space with two elements.
2. Similarly, for Distributive Lattices, the description of the free algebras is similarly
straightforward: for a set X,

2X•
understood as the product of X-many copies of 2• , the two element poset 0 < 1,
with the pointwise order and topology.

Having a good grasp of free algebras is intimately related to having a good grasp of
colimits of these algebras. Logically, this has several natural desirable applications:
interpolation, conservativity, etc.

3



Motivation

Mantra
If L is a logic, with a corresponding class of algebras K, the free algebras of K are alge-
braic versions of canonical models; they encode most of the interesting properties of L.

Example
1. Free Boolean algebras are very well-understood: for a set X they can be described
as the duals of

2X

understood as the X-fold product of the discrete space with two elements.
2. Similarly, for Distributive Lattices, the description of the free algebras is similarly
straightforward: for a set X,

2X•
understood as the product of X-many copies of 2• , the two element poset 0 < 1,
with the pointwise order and topology.

Having a good grasp of free algebras is intimately related to having a good grasp of
colimits of these algebras. Logically, this has several natural desirable applications:
interpolation, conservativity, etc.

3



Motivation

Mantra
If L is a logic, with a corresponding class of algebras K, the free algebras of K are alge-
braic versions of canonical models; they encode most of the interesting properties of L.

Example
1. Free Boolean algebras are very well-understood: for a set X they can be described
as the duals of

2X

understood as the X-fold product of the discrete space with two elements.
2. Similarly, for Distributive Lattices, the description of the free algebras is similarly
straightforward: for a set X,

2X•
understood as the product of X-many copies of 2• , the two element poset 0 < 1,
with the pointwise order and topology.

Having a good grasp of free algebras is intimately related to having a good grasp of
colimits of these algebras. Logically, this has several natural desirable applications:
interpolation, conservativity, etc.

3



Intuitionistic Monsters

Definition
An algebra H = (H,∧,∨,→, 0, 1) is called a Heyting algebra if (H,∧,∨, 0, 1) is a
bounded distributive lattice satisfying for every a, b, c:

a ∧ b ≤ c ⇐⇒ a ≤ b → c.

⊤

...

• •

• •

• •

• •

•

Figure 1: Rieger-Nishimura Lattice
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Intuitionistic Monsters (Cont.d)

Free n-generated Heyting algebras for n > 1 are quite complex.

Coproducts of Heyting algebras have remained generally unexplored (except for some
locally finite subvarieties, e.g. Gödel Algebras).

The goal of this work is to present a construction which gives us access to free Heyting
algebras, coproducts of Heyting algebras, and related constructions.
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Generating Heyting Algebras



Heyting Algebras from Distributive Lattices

Describing the freely generated algebras amounts to studying the adjunction:

HA Set
Free

Forget

Figure 2: Free-Forgetful Adjunction

Instead of studying it directly, we “split” this adjunction:

HA Set

DL

Forget

Free

FreeDLFreeHA

Figure 3: Split Free Forgetful Adjunction

Key Intuition: We think of generating Heyting algebras as adding infinitely many layers
of implications to a distributive lattice.

7



Heyting Algebras from Distributive Lattices

Describing the freely generated algebras amounts to studying the adjunction:

HA Set
Free

Forget

Figure 2: Free-Forgetful Adjunction

Instead of studying it directly, we “split” this adjunction:

HA Set

DL

Forget

Free

FreeDLFreeHA

Figure 3: Split Free Forgetful Adjunction

Key Intuition: We think of generating Heyting algebras as adding infinitely many layers
of implications to a distributive lattice.

7



Heyting Algebras from Distributive Lattices, algebraically

Let D be a distributive lattice, and X a set of generators. Let FDL(X) be the free
distributive lattice on X.

Let D0 = D. Then set
D1 = FDL({a → b : a, b ∈ D})/Θ

where Θ contains:

1. Axioms of Heyting algebras;
2. Axioms enforcing elements of the form 1 → a, for a ∈ D, to behave like the
elements from D.

This gives us one-step.

We set the map i1 : D0 → D1 sending a to [1 → a], which is a homomorphism by force.
We then iterate; but for D2 we need to also add one more rule to Θ:

3. Axioms ensuring that if a, b ∈ D, then:

1 →D2 (a →D1 b) ≡ (1 →D1 a) →D2 (1 →D2 b).

This is how we define D2 , and i2 is defined similarly.
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Heyting Algebras from Distributive Lattices, algebraically

We then iterate infinitely:

1. Dn+1 = FDL({a → b : a, b ∈ Dn})/Θ, where Θ is defined as above;
2. in : Dn → Dn+1 sends a to [1 → a].

Problem: We would like to say that the free Heyting algebra generated by D is the
union of all of these. But we do not know whether this is a chain of embeddings, or
really anything about this construction.
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Dual Perspectives



One-step dual constructions

To clarify the properties of the above construction, we analyze it dually.

The idea of dual one-step constructions is not-new, and well-studied in Modal Logic.
In the case where we generate from finite Heyting algebras, this was studied by
Ghilardi (1992), generalizing previous work of Urquhart (1973); Bezhanishvili and Gehrke
(2009) gave a detailed outline of this method for various classes.

11



One-step dual constructions

To clarify the properties of the above construction, we analyze it dually.

The idea of dual one-step constructions is not-new, and well-studied in Modal Logic.
In the case where we generate from finite Heyting algebras, this was studied by
Ghilardi (1992), generalizing previous work of Urquhart (1973); Bezhanishvili and Gehrke
(2009) gave a detailed outline of this method for various classes.

11



Vietoris Spaces

Let (X,≤, τ) be a Priestley space (compact, totally order-disconnected space). We
denote by (V(X),⊇) the Vietoris Hyperspace of X with reverse inclusion.

V(X) is the set of closed subsets of X; it has a basis consisting of sets:

[U] = {C ∈ V(X) : C ⊆ U} and ⟨V⟩ = {C ∈ V(X) : C ∩ V ̸= ∅}

where U, V ∈ Clop(X).

We write Vr(X) for the set of closed and rooted subsets of X.

The following is a crucial lemma:

Lemma
The space Vr(X) is a closed subspace of V(X).

Proof.
Consider V(X)× X. Then look at the following spaces:

{(C, x) : C ⊆ ↑x} and {(C, x) : x ∈ C}.

One can show that both of them are closed subspaces of V(X) × X. Their intersection
is thus closed. But Vr(X) is the projection on the first coordinate of such a space – and
continuous functions between Stone spaces are closed maps.
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G-open maps

Definition
Let X, Y, Z be Priestley spaces, and g : X → Y and f : Z → X be Priestley morphisms. We
say that f is open relative to g (g-open for short) if it satisfies the following:

∀a ∈ Z, ∀b ∈ X, (f(a) ≤ b =⇒ ∃a′ ∈ Z, (a ≤ a′ & g(f(a′)) = g(b)). (*)

Given S ⊆ X a closed subset, we say that S is g-open (understood as a poset with the
restricted partial order relation) if the inclusion is itself g-open.

Lemma
A map f : Z → X as above is g-open if and only if whenever U, V ⊆ Y are clopen upsets,
↓g−1[U]− g−1[V] is clopen in X, and:

f−1[X− ↓(g−1[U]− g−1[V])] = X− ↓(f−1g−1[U]− f−1g−1[V]).

i.e., f−1 preserves relative pseudocomplements indexed by g−1 .
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One-step constructions

Definition
Let X, Y be a Priestley spaces, g : X → Y Priestley morphism. We denote by Vr(X) the set
of closed and rooted subsets of X. We denote by Vg(X) the set of closed, rooted and
g-open subsets of X.

Then we also have:

Lemma
Let X, Y be Priestley spaces, g : X → Y be a Priestley morphism such that X whenever
U, V ⊆ Y are clopen, ↓(g−1[U]− g−1[V]) is clopen in X. Then Vg(X) is a closed subspace
of Vr(X).

Proposition
If X, Y are Priestley spaces such that g : X → Y is a Priestley morphism in the above
conditions, then Vg(X) is a Priestley space. Moreover, the map rg : Vg(X) → X sending
each rooted subset C to its root (the “root map”) is a continuous and order-preserving
surjection which is g-open.
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Vietoris Complexes

We can now proceed with the main construction:

Definition
Let g : X → Y be a Priestley morphism. The g-Vietoris complex over X (Vg•(X),≤•), is a
sequence

(V0(X), V1(X), ..., Vn(X))

connected by morphisms ri : Vi+1(X) → Vi(X) such that:
1. V0(X) = X;
2. r0 = g
3. For i ≥ 0, Vi+1(X) := Vri (Vi(X));
4. ri+1 = rri : Vi+1(X) → Vi(X) is the root map.

We denote the projective limit of this family by VgG(X), and omit g when this is the
terminal map to 1.

It is not hard to show that VgG(X) is always an Esakia space.
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Vietoris Complexes

Then we can prove:

Proposition
Let g : X → Y be a Priestley morphism, and let k : Z → X be a g-open Priestley morphism.
Then there exists a unique extension of k to a p-morphism k̃ : Z → VgG(X).

By considering maps appropriately, one can use this to prove:

Corollary
The assignment VG is a functor mapping Pries of Priestley spaces and Priestley mor-
phisms, to the category Esa of Esakia spaces and p-morphisms. It is the right adjoint
of the inclusion.
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Some Applications



Free Algebras

Using the above results we can obtain a more concrete description of free Heyting
algebras:

Corollary
Let S be any set. Then the Esakia space VG(2S) is dual to the free Heyting algebra on
S-generators.

In the finite case this recovers Urquhart/Ghilardi’s construction of the free
n-generated Heyting algebra.
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Coproducts of Heyting algebras

Given X, Y two Esakia spaces, their cartesian product X× Y is again an Esakia space;
however this is not the categorical product.

Proposition
Let X, Y be two Esakia spaces. Then the triple

(VπX,πYG (X× Y), π̃X, π̃Y)

is the categorical product of X and Y.

Using this we can prove some basic facts about the category of Heyting algebras,
directly:

Theorem
The category of Heyting algebras has amalgamation.

And we can prove others which we would not know how to prove otherwise:

Theorem
The category of Heyting algebras is co-distributive.
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Coalgebraic Applications

Paste somethings from the AIML presentation

20



Further Applications

The applications of this method do not seem to be limited to this. One goal I have in
sight is to find a way of using this to prove the following:

Theorem
If p, q are propositional letters, then the inclusion FHA(p) → FHA(p, q) has a left and a
right adjoint.

This is the algebraic version of the Uniform Interpolation Property due to Pitts.
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Open Questions

There are several open questions raised by this, of a technical and conceptual nature:

1. Is Vg(X) a (bi-)Esakia space whenever X is one?

2. Can one construct free bi-Heyting algebras using some modifications of the above
ideas?

3. Can this description be used for instance to study model theoretic questions
about the first-order theory of (free) Heyting algebras?
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Thank you!
Questions?
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