Rules in Algebraic and Geometric Form: Structural COMPLETENESS OF BI-INTUITIONISTIC LOGIC

Rodrigo N. Almeida - ILLC-UvA (joint work with N. Bezhanishvili)
June 23, 2023

Background

My research sits in between three interrelated areas, broadly speaking

- Logic: Some form of study of reasoning (?);

Background

My research sits in between three interrelated areas, broadly speaking

- Logic: Some form of study of reasoning (?);
- Algebra: The mathematics of manipulating symbols;

Background

My research sits in between three interrelated areas, broadly speaking

- Logic: Some form of study of reasoning (?);
- Algebra: The mathematics of manipulating symbols;
- Topology: The mathematics of describing space.

Background

My research sits in between three interrelated areas, broadly speaking

- Logic: Some form of study of reasoning (?);
- Algebra: The mathematics of manipulating symbols;
- Topology: The mathematics of describing space.

My goal today is to talk to you about a particular phenomenon that I am interested in, and hopefully invite some of you to understand it from the perspective I think about it; I am interested to know about how you think about these things.

Background

My research sits in between three interrelated areas, broadly speaking

- Logic: Some form of study of reasoning (?);
- Algebra: The mathematics of manipulating symbols;
- Topology: The mathematics of describing space.

My goal today is to talk to you about a particular phenomenon that I am interested in, and hopefully invite some of you to understand it from the perspective I think about it; I am interested to know about how you think about these things.

I will assume a passing familiarity with intuitionistic logic, and sometimes more than that.

What is a rule system?

Fix a given logical language \mathcal{L}; we will be general and somewhat sketchy.
Definition
Let $\vdash \subseteq \mathcal{P}(\mathcal{L}) \times \mathcal{L}$. We say that \vdash is a rule system if it satisfies, for every $\Gamma, \Delta \subseteq \mathcal{L}$ and $\psi, \phi \in \mathcal{L}$:

1. (Reflexity) $\phi \vdash \phi$
2. (Cut Rule) $\Gamma \vdash \phi$ for every $\phi \in \Delta$, and $\Delta \vdash \psi$, then $\Gamma \vdash \psi$.
3. (Substitution Invariance) if $\Gamma \vdash \phi$ and σ is a substitution, then $\sigma[\Gamma] \vdash \sigma(\phi)$.

Example
Consider IPC or CPC with \vdash standing for usual (Hilbert-style) derivability.

Admissible Rules and Structural Completeness

Definition
Given a rule system \vdash, we say that a rule Γ / ϕ is

- Admissible if for each substitution σ, whenever $\vdash \sigma\left(\psi_{i}\right)$ for each $\psi_{i} \in \Gamma$, then $\vdash \sigma(\phi)$.
- Derivable if it holds that $\Gamma \vdash \phi$.

We say that a rule system \vdash is structurally complete if all admissible rules are derivable.
Observe that all derivable rules are admissible.

Admissible Rules and Structural Completeness

Definition

Given a rule system \vdash, we say that a rule Γ / ϕ is

- Admissible if for each substitution σ, whenever $\vdash \sigma\left(\psi_{i}\right)$ for each $\psi_{i} \in \Gamma$, then $\vdash \sigma(\phi)$.
- Derivable if it holds that $\boldsymbol{\Gamma} \vdash \phi$.

We say that a rule system \vdash is structurally complete if all admissible rules are derivable.
Observe that all derivable rules are admissible.

Example

CPC is structurally complete. An example of an admissible rule over IPC which is not derivable is:

$$
\frac{\neg A \rightarrow(B \vee C)}{(\neg A \rightarrow B) \vee(\neg A \rightarrow C)}
$$

Algebraic Understanding

To each rule system \vdash we associate a quasivariety.
Definition
A class K of algebras is called a quasivariety if it is closed under subalgebras, products and ultraproducts; a quasivariety is called a variety if it is closed under homomorphisms.

Algebraic Understanding

To each rule system \vdash we associate a quasivariety.

Definition

A class K of algebras is called a quasivariety if it is closed under subalgebras, products and ultraproducts; a quasivariety is called a variety if it is closed under homomorphisms.

Intuition: Quasivarieties are good collections of models of a rule system. A variety is a collection of models of a logic.

It is possible to pin structural completeness down to universal algebra:

Algebraic Understanding

To each rule system \vdash we associate a quasivariety.
Definition
A class K of algebras is called a quasivariety if it is closed under subalgebras, products and ultraproducts; a quasivariety is called a variety if it is closed under homomorphisms.

Intuition: Quasivarieties are good collections of models of a rule system. A variety is a collection of models of a logic.

It is possible to pin structural completeness down to universal algebra:

Proposition

(Bergman, 1988) The following are equivalent for a rule system \vdash with an associated quasivariety K:

1. \vdash is structurally complete;
2. Every proper subquasivariety of K generates a proper variety than the one generated by K.

Relational Understanding

If we are working in a setting like IPC we have a duality between algebraic models and relational models. For our purposes we have that:

$$
\begin{aligned}
\text { Finite Heyting Algebras } & \rightsquigarrow \text { Finite Posets } \\
\text { Subalgebras } & \rightsquigarrow \text { P-morphic Image. } \\
\text { Finite Products } & \rightsquigarrow \text { Disjoint Unions. }
\end{aligned}
$$

Figure 1: Some posets

Relational Understanding

If we are working in a setting like IPC we have a duality between algebraic models and relational models. For our purposes we have that:

$$
\begin{aligned}
\text { Finite Heyting Algebras } & \rightsquigarrow \text { Finite Posets } \\
\text { Subalgebras } & \rightsquigarrow \text { P-morphic Image. } \\
\text { Finite Products } & \rightsquigarrow \text { Disjoint Unions. }
\end{aligned}
$$

Figure 1: Some posets

Some very strong results can be shown using these tools:
Theorem (Citkin,1978)
If L is a superintuitionistic logic, then L is hereditarily structurally complete (with respect to logics) if and only if L does not have the above five posets as models.

Bi-Intuitionistic Logic

The former holds for intuitionistic logic. But there is an extension of intuitionistic logic, which adds a new connective.

Definition

Consider the language \mathcal{L} of IPC, and enrich it with a connective " - ". This connective has the following intended semantics over intuitionistic models (\mathfrak{M}, \leq, V):

$$
\mathfrak{M}, x \Vdash \phi-\psi \Longleftrightarrow \exists y \leq x(\mathfrak{M}, y \Vdash \phi \text { and } \mathfrak{M}, y \nVdash \psi)
$$

The logic bi-IPC is the logic of these structures.

Bi-Intuitionistic Logic

The former holds for intuitionistic logic. But there is an extension of intuitionistic logic, which adds a new connective.

Definition

Consider the language \mathcal{L} of IPC, and enrich it with a connective " - ". This connective has the following intended semantics over intuitionistic models (\mathfrak{M}, \leq, V):

$$
\mathfrak{M}, x \Vdash \phi-\psi \Longleftrightarrow \exists y \leq x(\mathfrak{M}, y \Vdash \phi \text { and } \mathfrak{M}, y \nVdash \psi)
$$

The logic bi-IPC is the logic of these structures.
The algebraic models of these logics are bi-Heyting algebras, and there is also a duality between (finite) bi-Heyting algebras and (finite) posets, but now with p-morphisms that also look back.

Structural Completeness in bi-IPC

My PhD supervisor asked me a few months ago: "Could we have the kind of characterisation offered by Citkin, for bi-Heyting algebras?".

The story is not complete, but it starts with the following fact:
Proposition
(Kowalski et.al, 2020) If K is a variety of bi-Heyting algebras, and K is not the variety of Boolean algebras, then K contains the three element chain.

Structural Completeness in bi-IPC

My PhD supervisor asked me a few months ago: "Could we have the kind of characterisation offered by Citkin, for bi-Heyting algebras?".

The story is not complete, but it starts with the following fact:
Proposition
(Kowalski et.al, 2020) If K is a variety of bi-Heyting algebras, and K is not the variety of Boolean algebras, then K contains the three element chain.

And from this we can obtain the following:

Proposition

There are no structurally complete bi-IPC logics except for classical logic.

Structural Completeness in bi-IPC

Theorem

There are no structurally complete bi-IPC logics except for classical logic.
Assume that K is any variety which is not Boolean. Hence by the above proposition, $3 \in$ K. Now consider

$$
\mathbb{Q}(\{\mathcal{B}: \mathcal{B} \cong \mathcal{H} \times 2, \mathcal{H} \in \mathrm{~K}\}) .
$$

Clearly the variety generated by this quasivariety is not proper. But the quasivariety itself is proper, since we claim that 3 is not there. To see this, note that if it were, since it is finite it would belong to

$$
\mathbb{S P}^{f i n}(\{\mathcal{B}: \mathcal{B} \cong \mathcal{H} \times 2, \mathcal{H} \in K\})
$$

Structural Completeness in bi-IPC (continued)

Proposition
(Bergman, 1988) The following are equivalent for a rule system \vdash with an associated quasivariety K:

1. \vdash is structurally complete;
2. Every proper subquasivariety of K generates a proper variety than the one generated by K.

Structural Completeness in bi-IPC (continued)

Proposition

(Bergman, 1988) The following are equivalent for a rule system \vdash with an associated quasivariety K:

1. \vdash is structurally complete;
2. Every proper subquasivariety of K generates a proper variety than the one generated by K.

Thinking dually we can see that this is a contradiction: if X is any such space, it will be isomorphic to $Y \sqcup\{\bullet\}$ for some Y; but then the loose point can be mapped to nowhere in 3 . This shows the quasivariety is proper, and so the logic is not structurally complete.

Some facts can never the less be shown (I can discuss them if there is time):
Theorem
The logic bi-LC is hereditarily actively structurally complete.

Questions I'm Currently analysing

- Can we characterise all actively structurally complete (quasi)varieties of bi-intuitionistic logics?
- Can we extend the characterization for intuitionistic logics to rule systems?
- Can we find an admissible basis of rules for bi-IPC?
- Can we describe how structural completeness is distributed, in relationship with other strong metalogical properties? (Craig Interpolation, Uniform Interpolation, Hereditary FMP, etc)

