COLIMITS OF HEYTING ALGEBRAS THROUGH ESAKIA DUALITY

Rodrigo Nicolau Almeida – ILLC-UvA August 12, 2024

Free Algebras of Logic

Free Boolean algebras are very well-understood: for a set *X* they can be described as the duals of

2^X

understood as the X-fold product of the discrete space with two elements.

Free Boolean algebras are very well-understood: for a set X they can be described as the duals of

2^X

understood as the X-fold product of the discrete space with two elements.

Similarly, for Distributive Lattices, the description of the free algebras is similarly straightforward: for a set *X*,

2^X

understood as the product of X-many copies of 2_{\bullet} , the two element poset 0 < 1, with the pointwise order and topology.

Free Boolean algebras are very well-understood: for a set X they can be described as the duals of

2^X

understood as the X-fold product of the discrete space with two elements.

Similarly, for Distributive Lattices, the description of the free algebras is similarly straightforward: for a set *X*,

2^X

understood as the product of X-many copies of 2_{\bullet} , the two element poset 0 < 1, with the pointwise order and topology.

Having a good grasp of free algebras is intimately related to having a good grasp of colimits of these algebras. Logically, this has several natural desirable applications: interpolation, conservativity, etc.

Intuitionistic Monsters

Definition

An algebra $\mathcal{H} = (H, \land, \lor, \rightarrow, 0, 1)$ is called a Heyting algebra if $(H, \land, \lor, 0, 1)$ is a bounded distributive lattice satisfying for every a, b, c:

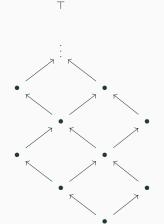
 $a \wedge b \leq c \iff a \leq b \rightarrow c.$

Intuitionistic Monsters

Definition

An algebra $\mathcal{H} = (H, \land, \lor, \rightarrow, 0, 1)$ is called a Heyting algebra if $(H, \land, \lor, 0, 1)$ is a bounded distributive lattice satisfying for every a, b, c:

$$a \wedge b \leq c \iff a \leq b \rightarrow c.$$



4

Free *n*-generated Heyting algebras for n > 1 are quite complex.

Free *n*-generated Heyting algebras for n > 1 are quite complex.

Coproducts of Heyting algebras have remained generally unexplored (except for some locally finite subvarieties, e.g. Gödel Algebras).

Free *n*-generated Heyting algebras for n > 1 are quite complex.

Coproducts of Heyting algebras have remained generally unexplored (except for some locally finite subvarieties, e.g. Gödel Algebras).

In this talk we present a construction which gives us access to free Heyting algebras, coproducts of Heyting algebras, and related constructions.

Generating Heyting Algebras

Heyting Algebras from Distributive Lattices

Describing the freely generated algebras amounts to studying the adjunction:

Figure 2: Free-Forgetful Adjunction

Heyting Algebras from Distributive Lattices

Describing the freely generated algebras amounts to studying the adjunction:

Figure 2: Free-Forgetful Adjunction

Instead of studying it directly, we "split" this adjunction:

Figure 3: Split Free Forgetful Adjunction

Key Intuition: We think of generating Heyting algebras as adding infinitely many layers of implications to a distributive lattice.

Heyting Algebras from Distributive Lattices, algebraically

Let \mathcal{D} be a distributive lattice, and X a set of generators. Let $F_{DL}(X)$ be the free distributive lattice on X.

Heyting Algebras from Distributive Lattices, algebraically

Let \mathcal{D} be a distributive lattice, and X a set of generators. Let $F_{DL}(X)$ be the free distributive lattice on X.

Let $\mathcal{D}_0 = \mathcal{D}$. Then set

$$\mathcal{D}_1 = F_{DL}(\{a \to b : a, b \in D\})/\Theta$$

where Θ contains:

- 1. Axioms of Heyting algebras;
- 2. Axioms enforcing elements of the form $1 \rightarrow a$, for $a \in D$, to behave like the elements from D.

This gives us one-step.

Heyting Algebras from Distributive Lattices, algebraically

Let \mathcal{D} be a distributive lattice, and X a set of generators. Let $F_{DL}(X)$ be the free distributive lattice on X.

Let $\mathcal{D}_0 = \mathcal{D}$. Then set

$$\mathcal{D}_1 = F_{DL}(\{a \to b : a, b \in D\})/\Theta$$

where Θ contains:

- 1. Axioms of Heyting algebras;
- 2. Axioms enforcing elements of the form $1 \rightarrow a$, for $a \in D$, to behave like the elements from D.

This gives us one-step.

We set the map $i_1 : \mathcal{D}_0 \to \mathcal{D}_1$ sending *a* to $[1 \to a]$, which is a homomorphism by force. We then iterate; but for \mathcal{D}_2 we need to also add one more rule to Θ :

3. Axioms ensuring that if $a, b \in D$, then:

$$1 \rightarrow_{D_2} (a \rightarrow_{D_1} b) \equiv (1 \rightarrow_{D_1} a) \rightarrow_{D_2} (1 \rightarrow_{D_2} b).$$

This is how we define \mathcal{D}_2 , and i_2 is defined similarly.

We then iterate infinitely:

1.
$$\mathcal{D}_{n+1} = F_{DL}(\{a \rightarrow b : a, b \in D_n\})/\Theta$$
, where Θ is defined as above;

2.
$$i_n : \mathcal{D}_n \to \mathcal{D}_{n+1}$$
 sends a to $[1 \to a]$.

Problem: We would like to say that the free Heyting algebra generated by \mathcal{D} is the union of all of these. But we do not know whether this is a chain of embeddings, or really anything about this construction.

Dual Perspectives

To clarify the properties of the above construction, we analyze it dually.

To clarify the properties of the above construction, we analyze it dually.

The idea of dual one-step constructions is not-new, and well-studied in Modal Logic. In the case where we generate from finite Heyting algebras, this was studied by Ghilardi (1992), generalizing previous work of Urquhart (1973); Bezhanishvili and Gehrke (2009) gave a detailed outline of this method for various classes.

Let (X, \leq, τ) be a Priestley space (compact, totally order-disconnected space). We denote by $(V(X), \supseteq)$ the Vietoris Hyperspace of X with reverse inclusion.

Let (X, \leq, τ) be a Priestley space (compact, totally order-disconnected space). We denote by $(V(X), \supseteq)$ the Vietoris Hyperspace of X with reverse inclusion.

V(X) is the set of closed subsets of X; it has a basis consisting of sets:

```
[U] = \{C \in V(X) : C \subseteq U\} \text{ and } \langle V \rangle = \{C \in V(X) : C \cap V \neq \emptyset\}
```

where $U, V \in Clop(X)$.

Let (X, \leq, τ) be a Priestley space (compact, totally order-disconnected space). We denote by $(V(X), \supseteq)$ the Vietoris Hyperspace of X with reverse inclusion.

V(X) is the set of closed subsets of X; it has a basis consisting of sets:

 $[U] = \{C \in V(X) : C \subseteq U\} \text{ and } \langle V \rangle = \{C \in V(X) : C \cap V \neq \emptyset\}$

where $U, V \in Clop(X)$.

We write $V_r(X)$ for the set of closed and rooted subsets of X.

The following is a crucial lemma:

```
Lemma
The space V<sub>r</sub>(X) is a closed subspace of V(X).
```

Proof. Consider $V(X) \times X$. Then look at the following spaces:

 $\{(C, x) : C \subseteq \uparrow x\}$ and $\{(C, x) : x \in C\}$.

Let (X, \leq, τ) be a Priestley space (compact, totally order-disconnected space). We denote by $(V(X), \supseteq)$ the Vietoris Hyperspace of X with reverse inclusion.

V(X) is the set of closed subsets of X; it has a basis consisting of sets:

 $[U] = \{C \in V(X) : C \subseteq U\} \text{ and } \langle V \rangle = \{C \in V(X) : C \cap V \neq \emptyset\}$

where $U, V \in Clop(X)$.

We write $V_r(X)$ for the set of closed and rooted subsets of X.

The following is a crucial lemma:

```
Lemma
The space V<sub>r</sub>(X) is a closed subspace of V(X).
```

Proof.

Consider $V(X) \times X$. Then look at the following spaces:

 $\{(C, x) : C \subseteq \uparrow x\}$ and $\{(C, x) : x \in C\}$.

One can show that both of them are closed subspaces of $V(X) \times X$. Their intersection is thus closed. But $V_r(X)$ is the projection on the first coordinate of such a space – and continuous functions between Stone spaces are closed maps.

Let X, Y, Z be Priestley spaces, and $g: X \to Y$ and $f: Z \to X$ be Priestley morphisms. We say that f is open relative to g (g-open for short) if it satisfies the following:

$$\forall a \in Z, \forall b \in X, (f(a) \le b \implies \exists a' \in Z, (a \le a' \& g(f(a')) = g(b)). \tag{*}$$

Given $S \subseteq X$ a closed subset, we say that S is g-open (understood as a poset with the restricted partial order relation) if the inclusion is itself g-open.

Let X, Y, Z be Priestley spaces, and $g: X \to Y$ and $f: Z \to X$ be Priestley morphisms. We say that f is open relative to g (g-open for short) if it satisfies the following:

$$\forall a \in Z, \forall b \in X, (f(a) \le b \implies \exists a' \in Z, (a \le a' \& g(f(a')) = g(b)). \tag{*}$$

Given $S \subseteq X$ a closed subset, we say that S is g-open (understood as a poset with the restricted partial order relation) if the inclusion is itself g-open.

Lemma

A map $f: Z \to X$ as above is g-open if and only if whenever $U, V \subseteq Y$ are clopen upsets, $\downarrow g^{-1}[U] - g^{-1}[V]$ is clopen in X, and:

$$f^{-1}[X - \downarrow (g^{-1}[U] - g^{-1}[V])] = X - \downarrow (f^{-1}g^{-1}[U] - f^{-1}g^{-1}[V]).$$

i.e., f^{-1} preserves relative pseudocomplements indexed by g^{-1} .

Let X, Y be a Priestley spaces, $g: X \to Y$ Priestley morphism. We denote by $V_r(X)$ the set of closed and rooted subsets of X. We denote by $V_g(X)$ the set of closed, rooted and g-open subsets of X.

Then we also have:

Lemma

Let X, Y be Priestley spaces, $g : X \to Y$ be a Priestley morphism such that X whenever $U, V \subseteq Y$ are clopen, $\downarrow (g^{-1}[U] - g^{-1}[V])$ is clopen in X. Then $V_g(X)$ is a closed subspace of $V_r(X)$.

Let X, Y be a Priestley spaces, $g: X \to Y$ Priestley morphism. We denote by $V_r(X)$ the set of closed and rooted subsets of X. We denote by $V_g(X)$ the set of closed, rooted and g-open subsets of X.

Then we also have:

Lemma

Let X, Y be Priestley spaces, $g : X \to Y$ be a Priestley morphism such that X whenever $U, V \subseteq Y$ are clopen, $\downarrow (g^{-1}[U] - g^{-1}[V])$ is clopen in X. Then $V_g(X)$ is a closed subspace of $V_r(X)$.

Proposition

If X, Y are Priestley spaces such that $g : X \to Y$ is a Priestley morphism in the above conditions, then $V_g(X)$ is a Priestley space. Moreover, the map $r_g : V_g(X) \to X$ sending each rooted subset C to its root (the "root map") is a continuous and order-preserving surjection which is g-open.

We can now proceed with the main construction:

Definition

Let $g: X \to Y$ be a Priestley morphism. The *g*-Vietoris complex over $X(V^g_{\bullet}(X), \leq_{\bullet})$, is a sequence

$$(V_0(X), V_1(X), ..., V_n(X))$$

connected by morphisms $r_i : V_{i+1}(X) \rightarrow V_i(X)$ such that:

- 1. $V_0(X) = X;$
- 2. $r_0 = g$
- 3. For $i \ge 0$, $V_{i+1}(X) := V_{r_i}(V_i(X))$;
- 4. $r_{i+1} = r_{r_i} : V_{i+1}(X) \to V_i(X)$ is the root map.

We can now proceed with the main construction:

Definition

Let $g: X \to Y$ be a Priestley morphism. The *g*-Vietoris complex over $X(V^g_{\bullet}(X), \leq_{\bullet})$, is a sequence

$$(V_0(X), V_1(X), ..., V_n(X))$$

connected by morphisms $r_i : V_{i+1}(X) \rightarrow V_i(X)$ such that:

- 1. $V_0(X) = X;$
- 2. $r_0 = g$
- 3. For $i \ge 0$, $V_{i+1}(X) := V_{r_i}(V_i(X))$;
- 4. $r_{i+1} = r_{r_i} : V_{i+1}(X) \rightarrow V_i(X)$ is the root map.

We denote the projective limit of this family by $V_G^g(X)$, and omit g when this is the terminal map to **1**.

It is not hard to show that $V_G^g(X)$ is always an Esakia space.

Then we can prove:

Proposition

Let $g: X \to Y$ be a Priestley morphism, and let $k: Z \to X$ be a g-open Priestley morphism. Then there exists a unique extension of k to a p-morphism $\tilde{k}: Z \to V_g^{\ell}(X)$. Then we can prove:

Proposition

Let $g: X \to Y$ be a Priestley morphism, and let $k: Z \to X$ be a g-open Priestley morphism. Then there exists a unique extension of k to a p-morphism $\tilde{k}: Z \to V_{g}^{e}(X)$.

By considering maps appropriately, one can use this to prove:

Corollary

The assignment V_G is a functor mapping **Pries** of Priestley spaces and Priestley morphisms, to the category **Esa** of Esakia spaces and p-morphisms. It is the right adjoint of the inclusion.

Some Applications

Using the above results we can obtain a more concrete description of free Heyting algebras:

Corollary

Let S be any set. Then the Esakia space $V_G(2^S)$ is dual to the free Heyting algebra on S-generators.

In the finite case this recovers Urquhart/Ghilardi's construction of the free n-generated Heyting algebra.

Given X, Y two Esakia spaces, their cartesian product $X \times Y$ is again an Esakia space; however this is not the categorical product.

Proposition

Let X, Y be two Esakia spaces. Then the triple

 $(V_G^{\pi_{\chi},\pi_{\Upsilon}}(X \times Y), \tilde{\pi_{\chi}}, \tilde{\pi_{\Upsilon}})$

is the categorical product of X and Y.

Given X, Y two Esakia spaces, their cartesian product $X \times Y$ is again an Esakia space; however this is not the categorical product.

Proposition

Let X, Y be two Esakia spaces. Then the triple

 $(V_G^{\pi_{\chi},\pi_{\Upsilon}}(X \times Y), \tilde{\pi_{\chi}}, \tilde{\pi_{\Upsilon}})$

is the categorical product of X and Y.

Using this we can prove some basic facts about the category of Heyting algebras, directly:

Theorem

The category of Heyting algebras has amalgamation.

Given X, Y two Esakia spaces, their cartesian product $X \times Y$ is again an Esakia space; however this is not the categorical product.

Proposition

Let X, Y be two Esakia spaces. Then the triple

 $(V_G^{\pi_X,\pi_Y}(X \times Y), \tilde{\pi_X}, \tilde{\pi_Y})$

is the categorical product of X and Y.

Using this we can prove some basic facts about the category of Heyting algebras, directly:

Theorem

The category of Heyting algebras has amalgamation.

And we can prove others which we would not know how to prove otherwise:

Theorem

The category of Heyting algebras is co-distributive.

There are several open questions raised by this, of a technical and conceptual nature:

1. Is $V_q(X)$ a (bi-)Esakia space whenever X is one?

There are several open questions raised by this, of a technical and conceptual nature:

- 1. Is $V_g(X)$ a (bi-)Esakia space whenever X is one?
- 2. Can one construct free bi-Heyting algebras using some modifications of the above ideas?

There are several open questions raised by this, of a technical and conceptual nature:

- 1. Is $V_g(X)$ a (bi-)Esakia space whenever X is one?
- 2. Can one construct free bi-Heyting algebras using some modifications of the above ideas?
- 3. Can this description be used for instance to study model theoretic questions about the first-order theory of (free) Heyting algebras?

Thank you! Questions?