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Abstract

We develop a method to recognize admissibility of Π2-rules, relating this problem
to a specific instance of the unification problem with linear constants restriction [3],
called here “unification with simple variable restriction”. It is shown that for logical
systems enjoying an appropriate algebraic semantics and a finite approximation of left
uniform interpolation, this unification with simple variable restriction can be reduced
to standard unification. As a corollary, we obtain the decidability of admissibility of
Π2-rules for many logical systems.
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1 Introduction

Non-standard rules have often been used in the context of logical systems to
axiomatise specific classes of models. Their use traces its origin to the work of
Gabbay [11] as well as Takeuti and Titani [23], and has been the subject of some
attention, especially with a focus on axiomatisation and admissibility of such
rules [25,7,8,1]. Nevertheless, in most of these contexts specific assumptions
have been made on what counts as such a non-standard rule, which make it
difficult to provide a unified account of what these rules should be, and which
make the current results available in the literature difficult to transfer: for
instance, whilst in [8], some connections were made between the solution of the
admissibility problem for some modal logic systems, the existence of uniform
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interpolants, and some problems of unification, it is not clear how to generalize
this to settings such as the Takeuti and Titani rule.

In this paper we start from the simple observation that, when left uniform
interpolants are available, admissibility of Π2 rules can be reduced to admis-
sibility of standard rules just by eliminating bound context variables via such
interpolants. It is less obvious that one can get the same result when assum-
ing only that left uniform interpolants are ’finitely approximable’: in fact, in
this case one needs to show that such finite approximations are stable under
substitutions. We obtain the result by employing techniques from two different
sources: on one side, we reduce our task to subobject manipulations in the
opposite category of finitely presented algebras (in the style of [17]) and on
the other side we connect admissibility problems for Π2 rules to a dedicated
version of E-unification theory obtained by specializing the “Unification with
Linear Constant Restrictions” employed in [3] to handle combined E-unificaton
problems and general E-unification problems.

The structure of the paper is as follows: in Section 2 we define formally the
problem of admissibility of Π2-rules, and state our main result. In Section 3
we introduce the problem of unification with simple variable restriction, and
provide an equivalent algebraic presentation of it. In Section 4 we recall the
correspondence between some logical properties we need and their reformula-
tions in the opposite of the category of finitely presented algebras. In Section
5 we prove our main theorem, showing that under suitable assumptions, the
unification type for simple variable restriction is finitary and reduces to the
standard unification type. In Section 6 we provide some applications; in Sec-
tion 8 we conclude and highlight some limitations of our method. In Section 7,
we analyze the prominent example of nuclear implicative semilattices.

2 Admissibility of Π2-rules in Logical Systems

Throughout we will assume that we are working in a functional signature L
comprising at least a constant symbol; the set of terms (aka propositional
formulas, or just formulas) is denoted by FmL. A logic ⊢ in this language
is a relation ⊢ ⊆ ℘(FmL) × FmL satisfying the usual identity, monotonicity,
transitivity, structurality (i.e. invariance under substitutions) and finitarity
conditions (see [10, Definitions 1.5-1.6]). We use the letters ϕ, ψ, . . . for L-
formulas and letters p, q, . . . or x, y, . . . for variables; we compactly represent
a tuple of distinct variables as p. The notation ϕ(p) means that the formula
ϕ has free variables included in the tuple p. Since our tuples of variables are
assumed to be formed by distinct elements, we emphasize that when we write
e.g. ϕ(p, q), we mean that the tuples p, q are made of distinct variables and are
also disjoint from each other. Notations like ϕ(ψ/p) (or just ϕ(ψ)) denote the
result of substituting p by ψ inside of ϕ. If Γ,∆ are sets of formulas, Γ ⊢ ∆
means (Γ, ϕ) ∈ ⊢ for all ϕ ∈ ∆.

When a logic is algebraizable, most of the definitions we shall introduce
can be transferred back and forth from the corresponding class of algebras.
Recall that ⊢ is algebraizable iff there is a quasivariety of L-algebras K and
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there are essentially inverse structural transformers between L-formulas and
L-equations, mapping elements of ⊢ to K-valid quasi-equations and vice versa
(see [10, Definitions 3.11]). We say that our logic ⊢ (which we assumed to be
finitary) is strongly algebraizable iff K is actually a variety.

Assumption 2.1 For the whole paper, we fix a language L and a strongly
algebraizable logic ⊢ in it; we call K the equivalent algebraic semantics of L-
algebras and E an equational theory axiomatizing K.

We shall also fix a Hilbert-style derivation system ⊢S associated to the
logic ⊢; vacuously one always exists (simply considering the set of rules Γ ⊢ ϕ
whenever Γ is finite and Γ ⊢ ϕ, see [10] for further details). We will begin by
outlining in general what a Π2-rule is in this context; the definitions here are
analogous to the ones presented in [1].

Definition 2.2 Let Γ = {ϕi(p, q) : i ≤ n} and ψ(q) be formulas in the lan-
guage L. The Π2-rule associated with this sequence of formulas is denoted
∀pΓ/2ψ (sometimes without the universal quantifier, when the variables are
clear from context) 3 and usually displayed as:

∀p (ϕ0(p, q), ..., ϕn(p, q))

ψ(q).

Given such a collection of formulas Γ = {ϕi}i, we refer to p as the bound context
of Γ, or generally, the bound context associated to Γ, and sometimes denote it
as Fc(ϕi) or Fc(Γ); we refer to propositional variables not ocurring in Fc as the
free context. Whenever the bound context is empty, the rule is referred to as a
standard rule.

Example 2.3 Let L be the language of modal logic. Gabbay’s irreflexivity
rule is the rule

∀p ((2p→ p) ∨ ϕ)
ϕ

where ϕ is any formula, such that p does not occur in ϕ. This was used in [11]
to obtain completeness with respect to a class of irreflexive frames.

Example 2.4 Let L be the language of modal algebras with a binary modality
⇝, called the signature of contact algebras. Consider the following rule:

∀p ((p⇝ p) ∧ (ϕ⇝ p) ∧ (p⇝ ψ))→ χ

(ϕ⇝ ψ)→ χ.

This rule was discussed in [7] and [8], and used to axiomatise the strict implica-
tion calculus. Notice however that our notion of Π2-rule is more general than
the Π2-rules introduced in [7] and [8] (for instance, the Π2-rules introduced
there do not have all standard rules as special cases).

3 This notation serves to emphasise both the fact that these are distinct from usual rules,
and the second-order nature of these rules, but we point out that it is purely formal.
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Example 2.5 Let L be the language of Heyting algebras. Consider the fol-
lowing rule, often called the Takeuti-Titani rule or the density rule:

∀r(g → ((p→ r) ∨ (r → q) ∨ c))
g → (p→ q) ∨ c

Such a rule has been fruitfully used to axiomatise classes of Gödel algebras and
other MV-algebras (see e.g. [21,5]). We will return to it as an example later.

We now explain how Π2-rules can be used within the derivation system ⊢S :

Definition 2.6 Let Σ be a set of Π2-rules. Given a formula ϕ we say that
ϕ is derivable using the Π2-rules in Σ, and write ⊢S⊕Σ ϕ, provided there is a
sequence ψ0, ..., ψn of formulas such that:

• ψn = ϕ;

• For each ψi we have that either:
(i) ψi is an instance of an axiom of ⊢S or,
(ii) ψi is obtained using a rule from ⊢S , from some previous ψj0 , ..., ψjk or,
(iii) ψi = χ(ξ/q) and ψjk = µk(r/p, ξ/q) for 0 ≤ jk < i ≤ n, where
· r is a renaming of p, away from ξ, i.e., a set of fresh variables not ocurring
in ξ;
· ∆ = {µk(p, q) : k ∈ {0, ...,m}};
· ∀p∆/2χ ∈ Σ;
· χ = χ(q).

An extended calculus is a calculus of the kind ⊢S⊕Σ. We can now write
what it means for a rule to be admissible:

Definition 2.7 Let Γ/2ϕ be a Π2-rule, and ⊢S⊕Σ some extended calculus. We
say that the rule Γ/2ϕ is admissible in ⊢S⊕Σ if for all ψ:

⊢S⊕Σ⊕Γ/2ϕ ψ =⇒ ⊢S⊕Σ ψ.

In light of the definition of derivation using non-standard rules, we want
to “internalize” the notion of admissibility for ordinary (i.e. non extended)
calculi. A standard rule is admissible over ⊢ iff in every substitution making
the premises into theorems of ⊢ also makes the conclusion into a theorem of
⊢. 4 In order to obtain a similar characterization here, we need the notion of
C-invariant substitution. Given a finite set C = {p1, ..., pn} of propositional
variables, a C-invariant substitution is a substitution σ mapping the pi into
themselves and the other propositional variables q into formulas σ(q) not con-
taining the variables in C.

Lemma 2.8 Let ∀pΓ/2ϕ be a Π2-rule and let C := {p1, ..., pn}. Then ∀pΓ/2ϕ
is admissible over ⊢S if and only if whenever σ is a C-invariant substitution
and we have ⊢S σ(Γ), then we have also ⊢S σ(ϕ).

4 It should be noticed however that this characterization does not always hold, for instance
it fails for multiple-conclusion rules, see [20] for a thorough discussion.
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Proof. Follows by induction on the structure of the derivation and by the fact
that ⊢S is invariant under variable renamings. 2

Given a logic ⊢, by the ⊢-admissibility problem for Π2-rules we mean the
problem of determining, given a triple (Γ, ϕ, C) (where C = p is a set of propo-
sitional letters ocurring in Γ but not in ϕ), whether the Π2-rule ∀pΓ/2ϕ is
admissible over ⊢. It is well-known that the ⊢-admissibility problem for stan-
dard rules need not be decidable (see for example [2, Theorem 4]), and that it is
decidable for a substantial number of logical systems encountered in practice,
such as S4,S5, IPC and lax logic [15] amongst others. In this paper we will
obtain a general result concerning the decidability of admissibility for Π2-rules,
under specific assumptions which we now proceed to review.

First, we need to recall some notions concerning different interpolation prop-
erties. The following definition is modelled after [9, Section 2]:

Definition 2.9 We say that a logic ⊢ has the Maehara interpolation property
if for any finite sets p, q, r of propositional variables and for any finite sets
of formulas Σ(p, q),∆(q, r),Σ′(p, q) in the language L the following holds: if
Σ(p, q) ∪∆(q, r) ⊢ Σ′(p, q), then there exists a set of formulas Π(q), such that
∆(q, r) ⊢ Π(q) and Σ(p, q) ∪Π(q) ⊢ Σ′(p, q).

Definition 2.10 We say that a logic ⊢ has right uniform deductive interpola-
tion if for any finite sets p, q of propositional variables, and finite set of formulas
Σ(p, q) there exists a finite set of formulas Π(q) such that for any finite set of
propositional variables r and for any finite set of formulas ∆(q, r)

Σ(p, q) ⊢ ∆(q, r) ⇐⇒ Π(q) ⊢ ∆(q, r).

There is a specular left uniform deductive interpolation property saying that
for any finite sets q, r of propositional variables, and finite set of formulas
∆(q, r) there exists a finite set of formulas Θ(q) such that for any finite set of
propositional variables p and for any set of formulas Σ(p, q)

Σ(p, q) ⊢ ∆(q, r) ⇐⇒ Σ(p, q) ⊢ Θ(q).

The two properties are not equivalent 5 ; the latter property is sometimes de-
noted by saying that the logic ⊢ has global post-interpolants. In this paper, we
consider the following strictly weaker version of left uniform deductive interpo-
lation:

Definition 2.11 We say that ⊢ has left-finitary uniform deductive interpola-
tion if for any finite sets q, r of propositional variables, and finite set of formulas
∆(q, r) there is a finite collection of finite sets of formulas Θ1(q), . . . ,Θn(q) such

5 See Example 6.2 below for a counterexample. Equivalence can hold in very special contexts,
typically when compact congruences are Boolean (this is the case of [8, Section 4] for the
presence of a universal modality).
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that:

(i) Θi(q) ⊢ ∆(q, r) for each i ≤ n and

(ii) for any p and Σ(p, q),

Σ(p, q) ⊢ ∆(q, r) =⇒ Σ(p, q) ⊢ Θi(q)

for some i ≤ n.

When we move to concrete decidability problems and say that ⊢ has left-
finitary uniform deductive interpolation, we also assume that the above finite
sets Θ1(q), . . . ,Θn(q) are effectively computable from ∆(q, r). The main result
of the paper is as follows:

Theorem 2.12 Suppose that ⊢ has

(i) the Maehara Interpolation Property;

(ii) Right-Uniform Deductive Interpolation;

(iii) Left-Finitary Deductive Uniform Interpolation.

Then if both ⊢ itself and the ⊢-admissibility problem for standard rules are
decidable, so is the ⊢-admissibility problem for Π2-rules.

After establishing the algebraic analogues of these syntactic properties (in
Section 4), the proof of this Theorem will be given as Corollary 5.5. As a
consequence, we obtain that several well-studied logical systems have such a
decidable problem: among them we have S5,GL,Grz, IPC, LC and lax logic [18],
all of which satisfy the hypotheses of the Theorem. As for logics without left
uniform deductive interpolation property, we mention the {∧,⊤,→} -fragment
of IPC and the {ℓ,∧,⊤,→}-fragment of lax logic: these systems have Maehara
interpolation, are locally finite (by Diego theorem and extensions [6]) and have
decidable admissibility problems for standard rules. In Section 6, we illustrate
with examples how the algorithm from Theorem 2.12 works.

3 Unification with Simple Variable Restrictions

In this section we recall some essential concepts from unification theory which
will be needed in our work; the reader can find more general information on
unification and E-unification theory in [4] and the references contained therein.
Our aim is to introduce unification with simple variable restrictions: this is a
special case of unification with linear constant restrictions as introduced in [3],
where unification with linear constant restrictions is an essential ingredient for
building combined unification algorithms.

We let FmL(p) be the set of L-formulas containing at most the variables
p; in algebraic terms, FmL(p) is the absolutely free algebra over p (also called
the term algebra over p). A substitution is an L-morphism of term algebras
σ : FmL(p)→ FmL(q); hence σ can be represented as a finite set of variable-
term pairs,

σ = {p1 ← ϕ1(q), ..., pn ← ϕn(q)}.
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We say that p is the domain and q the co-domain of the substitution σ. Recall
that a substitution σ is said to be C-invariant (for a finite set C of propositional
variables included into the domain and in the codomain of σ) iff it maps the
p ∈ C into themselves and the q ̸∈ C into terms σ(q) not containing the
variables in C.

Given two terms ϕ, ψ, and an equational theory E, we write ϕ =E ψ to
mean that E |= ϕ = ψ. 6 We say that two substitutions σ and τ having the
same domain and codomain are E-equivalent, briefly σ =E τ , if and only if
σ(p) =E τ(p) holds for every variable p in their domain. We say that τ :
FmL(p)→ FmL(q) is less general than σ : FmL(p)→ FmL(q

′) (with respect
to E) if there is a substitution θ : FmL(q)→ FmL(q

′) such that

τ =E θ ◦ σ.
Definition 3.1 Given a finite set of propositional variables C, an E-unification
problem with simple variable restriction (briefly a C-unification problem) is a
finite set of pairs of terms in the variables p (with C ⊆ p) 7

(PC) (ϕ1(p), ψ1(p)), ..., (ϕk(p), ψk(p));

a solution to such a problem or a C-unifier is a C-invariant substitution σ of
domain FmL(p) such that

σ(ϕ1) =E σ(ψ1), ..., σ(ϕk) =E σ(ψk).

When C = ∅, we speak of standard unification problems, or just unification
problems. We also write Usvr

E (PC) for the set of C-unifiers for the problem PC .
Once C and (PC) (a unification problem as above) are fixed, given two

C-unifiers τ and σ, we say that τ is less general than σ, and write τ ≤C σ if
it is less general than σ as a substitution. Hence, given a unification problem
(PC) with simple variable restrictions, this definition of ≤C induces a preorder
on Usvr

E (PC). A C-unification basis from this set is a subset B ⊆ Usvr
E (PC)

such that for every σ′ ∈ Usvr
E (PC) there is σ ∈ B such that σ′ ≤C σ holds; a

most general C-unifier (C-mgu) of (PC) is a σ ∈ Usvr
E (PC) such that {σ} is a

C-unification basis.

Definition 3.2 We say that E has finitary simple-variable-restriction (svr)
unification type iff every C-unification problem (PC) has a finite C-unification
basis; E has unitary scr-unification type iff every C-unification problem (PC)
has a C-mgu.

When C is empty we have as special case the (standard) notion of unifier,
mgu and finitary/unitary unification type; in such case, we indicate unification

6 Of course, since we assume algebraizability, all definitions in this section could be equivalent
stated inside the logical context of ⊢ by applying the appropriate transformers.
7 In this paper, we do not consider free constants – i.e., fixed propositional variables which
are interpreted freely in our algebras – in unification problems; considering them, would lead
to consider parameters in inference rules.
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problems (P∅) with (P ) and the corresponding set of unifiers as UE(P ) instead
of Usvr

E (P∅). The next Proposition (which is an immediate consequence of
the above definition and Lemma 2.8) shows the connection between finitary
C-unification type and admissibility of Π2-rules:

Proposition 3.3 Assume that ⊢S is decidable. Then if E has finitary svr-
unification type (with computable finite C-unification bases), then the ⊢-
admissibility problem for Π2-rules is decidable too.

We mention that there is a connection in the reverse direction that works
in case our logic ⊢ is decidable, consistent and has a ⊥-proposition. 8 In fact,
in this case C-unifiability of (PC) is equivalent to the non-admissibility of the
rule ∀pΓ/2⊥, where C = p, and where Γ is the finite set of formulas obtained
by appying the transformers to the equations in ϕi = ψi (i = 1, . . . , k).

3.1 Algebraic Characterization of C-Unification

It will be convenient for our purposes to see unification problems with sim-
ple variable restriction from the point of view of finitely presented algebras
(following the approach of [13] for standard unification problems). For that
purpose, given our equational theory E, we will work in Algopfp(E), the oppo-
site of the category of finitely presented E-algebras (recall that an algebra is
finitely presented iff it is isomorphic to a finitely generated free algebra divided
by a finitely generated congruence). Given a finitely presented E-algebra A,
we write it as A∗ when we see it in the opposite category Algopfp(E) (thus, A∗

is just a formal dual of A); in particular F(X)∗ is the formal dual of F(X), the
free algebra on the finitely many generators X. A similar notation is used for
morphisms (notice that we have (σ◦τ)∗ = τ∗◦σ∗ for contravariancy). Given an
object B∗ in Algopfp(E), we write Subr(B∗) for the set of regular subobjects 9 of

B∗ in the category Algopfp(E); we recall that such regular subobjects correspond,
dually, to the finitely presented quotients of B (see e.g. [17] for details).

In this context, an E-unification problem with simple variable restrictions is
a pair (A, C), where C is a finite set of free constants, and A∗ ∈ Subr(F(X)∗×
F(C)∗). A solution to this problem, which we call suggestively a C-unifier, is
a homomorphism σ : F(X) → F(Z), such that σ∗ × 1 factors in such a way
that the diagram of Figure 1 commutes:

F(X)∗ × F(C)∗ F(Z)∗ × F(C)∗

A∗

σ∗×1

Fig. 1. Solution to Unification Problem with Simple Variable Restrictions

8 This means that there is a constant ⊥ ∈ L such that ({⊥}, ϕ) belongs to ⊢ for all ϕ.
9 Recall that a regular subobject of X is an equivalence class (wrt to iso) of monomorphisms
(with codomain X) which happens to be equalizers of a pair of parallel arrows.
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Given such an E-unification problem with simple variable restrictions,
(A, C), and two C-unifiers σ : F(X) → F(Z) and γ : F(X) → F(W ), we
say that σ is more general than γ, and write σ ≤ γ if there is a homomorphism
k : F(Z)→ F(W ) such that k ◦ σ = γ; as a consequence, the outer triangle of
the following diagram commutes:

F(X)∗ × F(C)∗

A∗

F(W )∗ × F(C)∗ F(Z)∗ × F(C)∗

γ∗×1

k∗×1

σ∗×1

Fig. 2.

(the commutativity of the inner triangle follows as a consequence from the fact
that A∗ ↪→ F(X)∗ × F(C)∗ is mono).

Remark 3.4 Using the fact that our language L contains at least a constant
symbol, we have that σ ≤ γ iff there is l : F(Z) + F(C)→ F(W ) + F(C) such
that (σ∗ × 1) ◦ l∗ = γ∗ × 1 10 . In fact, homsets among free algebras are not
empty, so if we have (σ∗ × 1) ◦ l∗ = γ∗ × 1, then letting l∗ = ⟨l∗1, l∗2⟩, we can
put k∗ := l∗1 ◦ ⟨1, α∗⟩ (where α is any morphism F(C) −→ F(W )) and then
prove σ∗ ◦ k∗ = γ∗ via elementary properties of products. The latter is seen as
follows: from (σ∗ × 1) ◦ l∗ = γ∗ × 1, taking first components of pairs, we get
σ∗ ◦ l∗1 = γ∗ ◦ πF(X), so that

σ∗ ◦ k∗ = σ∗ ◦ l∗1 ◦ ⟨1, α∗⟩ = γ∗ ◦ πF(X) ◦ ⟨1, α∗⟩ = γ∗ .

It is easy to see that the above definition of comparison for C-unifiers gives
a preorder; we can write Usvr

E (A, C) for the preordered set of C-unifiers for
A. This ‘algebraic’ approach to C-unification is equivalent to the ‘symbolic’
approach of Definition 3.2, as the following proposition, proved in the Appendix
shows:

Proposition 3.5 Let (PC) a E-unification problem with simple variable re-
striction. If A is a finitely presented algebra with presentation (PC), then the
antisymmetric quotients of the preordered sets Usvr

E (A, C) and Usvr
E (PC) are

isomorphic.

4 Interpolation and Finitely Presented Algebras

We analyzed C-unification inside the opposite of the category of finitely pre-
sented algebras; we now do the same for the interpolation properties mentioned

10Here F(Z) + F(C) denotes the coproduct of F(Z) and F(C) in the category of finitely
presented algebras.
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in Theorem 2.12. We first recall some well-known results from universal alge-
bra.

Definition 4.1 We say that a class of L-algebras K enjoys the property that
“Injections are Transferable” (IT) if whenever f : A → B is a homomorphism,
and g : A → C is a monomorphism, then there are a morphism h : C → E and
a monomorphism h′ : B → E such that h′ ◦ f = h ◦ g (see Figure 3).

A B

C E

f

g h′

h

Fig. 3. Injections are Transferable

The following result is proved in [22, Lemma 26], see also [9]:

Theorem 4.2 The following are equivalent:

(i) ⊢ has the Maehara Interpolation Property;

(ii) K has the property (IT).

We note that it can be shown that (IT) is also equivalent to the conjunction
of the congruence extension property and the amalgamation property (this is
likewise proven in [22, Theorem 29]); we shall make brief use of this further
characterization in some examples below. Also notice that if (IT) holds in K,
then it holds also in the full subcategory of K formed by the finitely presented
algebras: this is because such a subcategory is closed under pushouts, and
because a homomorphism g which fits into a factoring of h = f ◦ g, where h is
a monomorphism, is itself a monomorphism (so that (IT) for finitely presented
algebras comes from the universal property of pushouts).

Right uniform deductive interpolation can likewise be given concrete mean-
ing, in a way which is directly inside finitely presented algebras:

Definition 4.3 We say that K is coherent if finitely generated subalgebras of
finitely presented algebras are again finitely presented.

The following is shown in [19, Theorem 2.3]

Theorem 4.4 ⊢ has right uniform deductive interpolation if and only if K is
coherent.

The notion of an r-regular category [17] can be useful to summarize the
properties of the opposite of the category of finitely presented algebras coming
from the above facts.

Definition 4.5 Let C be a category. We say that C is r-regular if it satisfies
the following:

(i) it has all finite limits;

(ii) epimorphisms are stable under pullback;
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(iii) every arrow has an epi/regular mono factorization.

The next proposition is folklore; it shows the importance of our base as-
sumptions on E (we provide a proof in the appendix, for completeness):

Proposition 4.6 If Alg(E) satisfies (IT) and coherence, then Algopfp(E) is an
r-regular category.

The special property of left-finitary uniform deductive interpolation can
likewise be given a straightforward algebraic interpretation inside the category
of finitely presented algebras. Our notation for r-regular categories is mostly
consistent with [17]. In particular, for an object X and an arrow f : Y −→ X,
we indicate with Subr(X) the poset of the regular subobjects of X and by f−1 :
Subr(X) −→ Subr(Y ) the operation of taking pullback along f . Projections
like X × Y −→ Y are indicated as πY ; the identity arrow for an object X (=
the maximum regular subobject of X) is indicated both with 1X or just with
1 for simplicity.

Definition 4.7 LetC be a category with finite limits. Given T ∈ Subr(X×Z),
we say that a finite collection B1, ..., Bn ∈ Subr(Z) is a ∀X -factorization of T
(or just a ∀-factorization of T ) if:

(i) π−1
Z (Bi) ≤ T for each i ≤ n;

(ii) for every C ∈ Subr(Z), such that π−1
Z (C) ≤ T , there is some i ≤ n such

that C ≤ Bi.

If n = 1 we say that this is a singular ∀-factorization. We say that C has the
∀-factorization property (singular ∀-factorization property) if for all objects
X,Z and any S ∈ Subr(X × Z), there is a ∀X -factorization (resp. singular
∀X -factorization) of S. The equational theory E (or the equivalent algebraic
semantics K) has the ∀-factorization property (singular ∀-factorization prop-
erty) iff so does Algopfp(E).

The following proposition is immediate from the definitions:

Proposition 4.8 The logic ⊢ has left-finitary deductive interpolation if and
only if Algopfp(E) has the ∀-factorization property.

The ∀-factorization property may follow from some natural assumptions:
for instance, if E is locally finite it trivially holds, since there are only finitely
many subobjects. In addition, if E is an equational theory axiomatising a
logical calculus L, and L has global post-interpolants, then the ∀-factorization
property holds and moreover ∀-factorizations are singular.

5 Finitary svr-Unification Types

In this section we present a proof of Theorem 2.12. Throughout this section, we
assume that K has (IT), Coherence properties and the ∀-factorization property.
We recall the following fact, proved in [17, Proposition 3.1, pp.51]:

Proposition 5.1 Let C be an r-regular category. Then the pullback functors
on regular subobjects have left adjoints satisfying the Beck-Chevalley condition:
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for every arrow f : Y → X in C, and every regular subobject S ∈ Subr(Y ),
there is a regular subobject ∃f (S) ∈ Subr(X) such that:

∃f (S) ≤ T iff S ≤ f−1(T )

holds for every regular subobject T ∈ Subr(X); in addition, for every pullback
square as in Figure 4, and every regular subobject S ∈ Subr(Y1), the following
condition holds:

f−1
2 (∃f1(S)) = ∃p2

(p−1
1 (S)).

Z Y1

Y2 X

p2

p1

f1

f2

Fig. 4. Beck-Chevalley Pullback Square

We now proceed to show that in r-regular categories, ∀-factorizations are
stable under pullbacks.

Lemma 5.2 Let C be an r-regular category; consider the pullback of Fig-
ure 5. If S ∈ Subr(X × Z) and B1, ..., Bn is a ∀Z-factorization of S, then

Y × Z X × Z

Y X

f×1

πY πX

f

Fig. 5. Pullback Stability

f−1(B1), ..., f
−1(Bn) is a ∀Z-factorization of (f × 1)−1(S).

Proof. Let i ≤ n be arbitrary, and assume that B1, ..., Bn ∈ Subr(X) are a
∀Z-factorization of S. First we want to show that

π−1
Y (f−1(Bi)) ≤ (f × 1)−1(S).

Note that since π−1
X (Bi) ≤ S, then we have (f ×1)−1(π−1

X (Bi)) ≤ (f ×1)−1(S)
by usual facts on pullbacks. Moreover, since f ◦ πY = πX ◦ (f × 1) we have
that π−1

Y (f−1(Bi)) ≤ (f × 1)−1(S).
For the second property, consider an arbitrary C ∈ Subr(Y ) such that

π−1
Y (C) ≤ (f ×1)−1(S). Using Proposition 5.1, we can apply the functor ∃f×1,

to obtain
∃f×1(π

−1
Y (C)) ≤ ∃f×1(f × 1)−1(S) ≤ S.

Using Beck-Chevalley, this implies that ∃f×1(π
−1
Y (C)) = π−1

X (∃f (C)) ≤ S. So
by the ∀Z-factorization property, there is some Bi such that ∃f (C) ≤ Bi. By
adjunction, C ≤ f−1(Bi) follows, which shows the property. 2
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Lemma 5.3 Given A∗ ∈ Subr(F(X)∗ × F(C)∗) and σ : F(X) → F(X ′), we
have that σ is a scr-unifier of (A, C) iff 1 ≤ (σ∗ × 1)−1(A∗).

Proof. Notice that if 1 ≤ (σ∗ × 1)−1(A∗), then there is an arrow making the
triangle of Figure 1 commute. Conversely, if there is such an arrow, then by
the universal property of pullbacks if follows that the monic (σ∗×1)−1(A∗) ↪→
F(X ′)∗ × F(C)∗ has a left inverse, so it is an isomorphism. 2

We now prove the key technical result of this section: we reduce E-
unification with simple variable restriction to standard E-unification:

Theorem 5.4 Let A∗ ∈ Subr(F(X)∗ × F(C)∗), and B∗1 , ...,B∗n be a ∀F(C)∗-
factorization of A∗. We have

Usvr
E (A, C) ≃ UE(B1) ∪ · · · ∪ UE(Bn)

(the isomorphisms being a preordered sets isomorphism).

Proof. Let σ ∈ Usvr
E (A, C) be a scr-unifier; then, by Lemma 5.3, we

have π−1
F(X′)∗(1) = 1 ≤ (σ∗ × 1)−1(A∗). Using Lemma 5.2 we have that

(σ∗)−1(B∗1), ..., (σ∗)−1(B∗n) is a ∀-factorization of (σ∗×1)−1(A∗), hence we have

1 ≤ (σ∗)−1(B∗i )

for some i, which means (again by Lemma 5.3 applied to the case C = ∅) that
σ is a unifier of Bi. Thus we have σ ∈

⋃
i UE(Bi).

Conversely, if σ : F(X) → F(X ′) belongs to UE(Bi), then by Lemma 5.3
(case C = ∅) we have 1F(X′)∗ ≤ (σ∗)−1(B∗i ). Since π−1

F(X)∗(B
∗
i ) ≤ A∗ we get

π−1
F(X′)∗((σ

∗)−1(B∗i )) = (σ∗ × 1)−1(π−1
F(X)∗(B

∗
i )) ≤ (σ∗ × 1)−1(A∗). Then by

transitivity we obtain

1 ∼= π−1
F(X′)∗(1F(X′)∗) ≤ π−1

F(X′)∗((σ
∗)−1(B∗i )) ≤ (σ∗ × 1)−1(A∗),

which means that σ ∈ Usvr
E (A) by Lemma 5.3.

Finally, note that the preorder relation is defined in the same way in
Usvr
E (A, C) and in UE(B1) ∪ ... ∪ UE(Bn). 2

As a consequence, we can supply the proof of Theorem 2.12:

Proof. By the results from Section 4, Maehara Interpolation, Right-Uniform
Interpolation and Left-Finitary Interpolation correspond, respectively, to (IT),
Coherence and the ∀-factorization Property. Consider now the Π2-rule
∀r∆(q, r)/2ψ(q) and let Θ1(q), . . . ,Θn(q) be the finite sets of formulas men-
tioned in Definition 2.11 for ∆(q, r). What Theorem 5.4 says (applying the
relevant transformers from formulas to equations and back) is that for every r-
invariant substitution σ, we have ⊢ σ(∆) iff we have ⊢ σ(Θi) for some i. Thus,
in view of Lemma 2.8, the rule ∀r∆/2ψ is admissible iff one of the standard
rules Θi/ψ is admissible. 2

Theorem 5.4 has also some important consequences regarding the decidabil-
ity of the unification problem with simple variable restrictions:
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Corollary 5.5 Suppose that K satisfies (IT), Coherence and ∀-factorization
property. Then:

(i) If E has finitary unification type, then it has finitary unification type for
the problem with simple variable restrictions.

(ii) If E has unitary unification type and ∀-factorizations are singular, then it
has unitary unification type for the problem with simple constant restric-
tions.

(iii) If E-unification is decidable and ∀-factorizations are computable, then E-
unification with simple constant restrictions is decidable as well.

6 Applications

In this section we supply some example applications.

Admissibility of Π2-rules via Unification

We can use Corollary 5.5 and Proposition 3.3 in order to directly obtain a deci-
sion procedure for admissibility of Π2-rules via unification. This goes as follows
(let us call τ the structural transformer from formulas to equations which is
granted from the algebraizability hypothesis, see [10, Definitions 3.11]): given
a Π2-rule ∀pΓ/2ϕ, we first compute a basis of p-unifiers σ0, ..., σn for the svr-
unification problem given by {τ(ψ) | ψ ∈ Γ}, and for each of these unifiers –
using the decidability of our logic – we check whether ⊢ ρ(σi(τ(ϕ))) holds or not,
where ρ is the inverse transformer of τ . The procedure for computing the basis
of p-unifiers amounts to the following: using left-finitary deductive uniform in-
terpolation, we compute the finitely many “approximants” of Γ with respect to
p; using decidability of unification, we compute for the transformed equations
of each such approximant a finite basis of standard unifiers. As shown by The-
orem 5.4 above, these correspond to a basis of p-unifiers of {τ(ψ) | ψ ∈ Γ}. In
practical cases, there is no need to apply structural transformers (from formulas
to equations and back) because many standard unification algorithms in the
literature oriented to propositional logics [2] takes as input directly formulas
(not their transformed equations). Thus, below we shall directly speak of ‘uni-
fiers’ and of ‘C-unifiers’ of a set of formulas Γ (meaning with that the ‘unifiers’
and the ‘C-unifiers’ of the transformed set of equations {τ(ψ) | ψ ∈ Γ}).

As an illustration of how to use our techniques to study admissibility, we
turn to the Takeuti-Titani rule, mentioned in Example 2.5. Such a rule was
proven to be admissible over a large class of algebraic signatures, through
syntactic methods, by Metcalfe and Montagna [21], generalising a proof of
Baaz and Veith [5].

Example 6.1 Let E be the theory of Gödel algebras, i.e., Heyting algebras H
satisfying the additional axiom

(p→ q) ∨ (q → p) = ⊤.

Their associated logical system is often denoted by LC (for ‘linear calculus’).
We will show that the TT rule
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∀r (g → ((p→ r) ∨ (r → q) ∨ c))
g → (p→ q) ∨ c

is admissible. Following our remarks above, it suffices to show that all of the
C-unifiers (where C = {r}) of the the formula g → ((p→ r) ∨ (r → q) ∨ c) are
C-unifiers for g → ((p → q) ∨ c). Since standard E-unification is unitary [26]
and the conditions of the previous section are satisfied – we are in the locally
finite case and, indeed, uniform post-interpolants exist – it suffices to show that
the most general standard unifier for the formula

∀r (g → (p→ r) ∨ (r → q) ∨ c)

(namely for the the uniform post-interpolant of g → ((p → r) ∨ (r → q) ∨ c)
wrt r) is also a standard unifier for the consequent g → (p→ q) ∨ c.

In LC and in intuitionistic logic systems, uniform interpolants admit a bisim-
ulation semantics which works for Kripke frames, as we proceed to explain.
Such semantics can be used to check that a certain formula is really the uni-
form interpolant of another given one. The finite Kripke frames corresponding
to finite Gödel algebras are precisely the finite frames F = (W,R) which are
prelinear, i.e. such that for each x ∈W , R[x] = {y | xRy} is a linear order. By
the results from [17], for any prelinear finite Kripke frame, and formula ϕ(p, q),
for each Kripke model V over F and over the propositional letters p, we have
for each x ∈W

(F, V ), x ⊩ ∀qϕ(p, q) ⇐⇒ for any (F′, V ′) p-bisimilar model (F′, V ′), x ⊩ ϕ(q, p).

Using this semantics, we can then show that:

∀r (g → (p→ r) ∨ (r → q) ∨ c) ≡ g → (p→ q) ∨ c.

The right to left side follows from second order intuitionistic propositional logic
with the help of the LC-valid formula (r → q)∨ (q → r). For the other side we
need bisimulation semantics. Suppose that we have points x ≥ y ∈ F such that
(F, V ), x ⊩ g, (F, V ), x ̸⊩ c, (F, V ), y ⊩ p, (F, V ), y ̸⊩ q. Form the bisimulation
expansion containing a duplicate y′ as an immediate successor of y where y
refutes r, and y′ forces r. This expansion provides a bisimilar model such that
g → (p → r) ∨ (r → q) ∨ c fails at x. Having such an equivalence, the result
immediately follows, since the uniform interpolant we obtained is precisely the
formula in the consequent of the Takeuti-Titani rule. △

Finitarity and Unitarity of Unification Type

In Section 5, we noted that there is a clear connection between svr-unification
types and classical unification. It is natural to ask whether in fact the type
is always preserved. The next example shows that it may happen that E-
unification is unitary and svr-unification type is only finitary.

Example 6.2 Consider the equational theory of implicative semilattices, de-
noted ISL; this corresponds to the (⊤,∧,→)-fragment of IPC. Such an equa-
tional theory is locally finite, has the amalgamation property and the congru-
ence extension property (hence it fulfills the hypotheses of Theorem 2.12, by
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the remark we made after Theorem 4.2). It is known that ISL has unitary ele-
mentary unification type [12]. We show that in the setting of unification with
simple variable restrictions the unification type becomes finitary. For consider
the following svr-unification problem, where we put C = {z} (the formula we
use is taken from [24, Example 4.5]):

((x→ z) ∧ (y → z)→ z,⊤).

Note that this problem has two incomparable C-unifiers, namely σ = {x 7→
⊤, y 7→ y} and τ = {y 7→ ⊤, x 7→ x}. But we claim that there can be no
unifier more general than both of them. For suppose that there was one, say
µ. We must have µ(x) ̸=E ⊤ and µ(y) ̸=E ⊤ (otherwise µ would be less
general than σ or τ). This implies that there are rooted Kriple models (with
respective roots r1, r2) such that (F1, V1), r1 ̸⊩ µ(x) and (F2, V2), r2 ̸⊩ µ(y).
Since z does not occur in µ(x), µ(y), we can freely suppose that (F1, V1), r1 ⊩ z
and (F2, V2), r2 ⊩ z. Now build another rooted Kripke model (F, V ) by taking
the disjoint union of (F1, V1) and (F2, V2) and by attaching it a new root r; we
also stipulate that (F, V ), r ̸⊩ z. Now then we have that,

(F, V ), r ̸⊩ (µ(x)→ z) ∧ (µ(y)→ z)→ z ,

so µ cannot be a C-unifier 11 . △

7 svr-Unification in Nuclear Implicative Semilattices

As a further nontrivial example, we show that the {ℓ,∧,⊤,→}-fragment of
lax logic satisfies the hypotheses of Theorem 2.12. The Maehara Interpolation
Property follows by the deduction theorem and by inspecting the proof of the
interpolation property for lax logic in [18]; Right-Uniform Interpolation and
Left-Finitary Uniform Interpolation follow from local finiteness of this variety,
shown in [6]. The decidability of the admissibility problems for standard
rules comes from finitarity of unification and computability of finite unification
bases: we will show such properties below (using methods different methods
from those adopted for lax logic in [15]).

First we need the following folklore fact (implicit in [14]):

Proposition 7.1 Let K be a locally finite variety such that subalgebras of finite
projective K-algebras are projective. Then unification in K is finitary. More-
over, if (P ) is a unification problem, then the unifiers from a finite unification
basis for this problem can be chosen so as not to contain more variables than
those already occurring in (P ).

Proof. Let A be a finitely presented K-algebra, which is finite by local finite-
ness; let it be a quotient q : F(X) −→ A of the finitely generated free alge-

11 Incidentally, we notice that the above argument independently proves that ISL does not
have left uniform interpolation (if it had, by Theorem 5.4, it would also have unitary svr-
unification type as it has unitary unification type).
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bra F(X). Let σ : F(X) −→ F(Y ) be a unifier for A; 12 as such, σ factors
through q as σ ◦ q. Taking the image factorization, we can further factorize σ

as A σ0−→ P
ι−→ F(Y ), where P is projective as a subalgebra of a projective

algebra. By projectivity, the surjective map σ0 ◦ q : F(X) −→ P has a section
s (i.e. σ0 ◦ q ◦ s = 1P ). Now s ◦ σ0 ◦ q : F(X) −→ F(X) is another unifier for
A (because it factors though q) and is more general than σ because

σ ◦ (s ◦ σ0 ◦ q) = (ι ◦ σ0 ◦ q) ◦ (s ◦ σ0 ◦ q) = ι ◦ σ0 ◦ q = σ

Thus unifiers of A having domain and codomain F(X) form a unification basis.
Since F(X) is finite, and hence there can be only finitely many unifiers with
this domain and codomain, this unification basis is finite. 2

The variety algebraizing the {ℓ,∧,⊤,→}-fragment of lax logic is formed by
nuclear implicative semilattices, namely by the algebras A = (A,⊤,∧,→, ℓ),
where (A,⊤,∧,→) is an implicative semilattice and ℓ : A −→ A is a nucleus,
i.e., a unary operator satisfying the conditions

x ≤ ℓx, ℓ(x ∧ y) = ℓx ∧ ℓy, ℓℓx ≤ ℓx .

The category of finite nuclear semilattices NISfin (which by local finiteness,
coincides with the category of finitely presented such algebras) is dual to the
category SFfin of finite S-posets and morphisms [6]. An S-poset is a triple
(X,≤, S), where (X,≤) is a poset and S ⊆ X is a subset; a morphism

f : (X,≤, S) −→ (Y,≤, T )

between S-posets is a partial map f satisfying the following conditions (we let
dom(f) be the domain of f , and x < y mean x ≤ y and x ̸= y):

(i) if x < y and x, y ∈ dom(f) then f(x) < f(y);

(ii) if x ∈ dom(f) and f(x) < y there there is x′ such that x < x′, x′ ∈ dom(f)
and f(x′) = y;

(iii) f−1(T ) = dom(f) ∩ S;
(iv) if s ∈ S, s ≤ x and x ∈ dom(f), then there are s′, x′ ∈ dom(f) such that
s ≤ s′ ≤ x′, s′ ∈ S and f(x′) = f(x).

We also need the following fact [6, Proposition 5.1]:

Lemma 7.2 The dual of f : (X,≤, S) −→ (Y,≤, T ) is injective iff f is surjec-
tive and the dual of f is surjective iff f is injective and totally defined.

Let α be an antichain in an S-poset (X,≤, S), i.e., a set of mutually ≤-
incomparable elements; a cover of α is some s ∈ S such that α is the set of the
immediate successors of s.

12We adopt notation and definitions consistent with those introduced in Subsection 3.1.
Adopting the approach of [12,14] (which views a unifier of A directly as a morphism with do-
main A and codomain a finitely presented projective algebra) would simplify the arguments.
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Lemma 7.3 The dual of a finite S-poset (X,≤, S) is a projective nuclear im-
plicative semilattice iff every antichain α ⊆ X such that α ̸⊆ S has a cover.

Proof. If the dual of (X,≤, S) is projective and α ⊆ X is such that α ̸⊆ S in
order to find a cover of α it is sufficient to embed (X,≤, S) into the S-poset
(X ∪ {∗},≤, S ∪ {∗}) obtained from (X,≤, S) by adding an extra element ∗
covering α: we show that the retract r : (X∪{∗},≤, S∪{∗}) −→ (X,≤, S) must
map ∗ to a cover r(∗) of α. First, since r is a retract, we must have r(x) = x for
x ∈ X. Then, ∗ must be in the domain of r by (i)-(iv): in fact, we have ∗ ≤ d
for d ∈ α \ S and so there must be s′ such that s′ ∈ dom(r) ∩ (S ∪ {∗}) and
∗ ≤ s′ ≤ d. This s′ must coincide with ∗ (because d is an immediate successor
of ∗, and d ̸∈ S), so ∗ ∈ dom(r); also r(∗) ∈ S by (iii) and r(∗) covers α by
(i)-(ii).

Conversely, suppose that (X,≤, S) satisfies the condition of the lemma and
take a total embedding into a finite S-poset (X,≤, S) ↪→ (Y,≤, T ). We find a
retract r : (Y,≤, T ) −→ (X,≤, S) by defining r(y) by induction on the height
of y ∈ Y . If y ∈ X, we put r(y) = y; otherwise let α be the antichain of the
minimal elements of {r(y′) | y < y′ & y′ ∈ dom(r)}. If y ̸∈ T or α ⊆ S, then
dom(r) will not include y, otherwise we take r(y) to be a cover of α. It is easy
to check that r is a retract of the inclusion (X,≤, S) ↪→ (Y,≤, T ). To prove
that r satisfies the above conditions (i)-(iv), one shows by induction on the
height of y that such conditions are satisfied by the restriction of r to the cone
{y′ ∈ Y | y ≤ y′}. 2

Lemma 7.4 Subalgebras of projective finite nuclear implicative semilattices are
projective.

Proof. Let (X,≤, S) be dual to a finite projective nuclear implicative semilat-
tice and let f : (X,≤, S) −→ (Y,≤, T ) be surjective. Take an antichain α ⊆ Y
such that α ̸⊆ T ; let β be the antichain formed by the minimal elements of
f−1(α); we have that f(β) = α and β ̸⊆ S by condition (iii) above. Thus there
is a cover s ∈ S for β and by (iv) we must have that s ∈ dom(f) and that f(s)
is a cover of α. 2

Theorem 7.5 Admissibility of standard rules (and consequently also of Π2-
rules) is decidable in the {ℓ,∧,⊤,→}-fragment of lax logic.

Proof. By Proposition 7.1 and Lemma 7.4, standard unification for this logic
has finitary unification type and finite bases of unifiers are computable. This
guarantees decidability of admissibility of standard rules and also of Π2-rules,
as explained at the beginning of Section 6. 2

8 Conclusions and Further Work

In this work we analyzed a new type of unification problems which are prop-
erly situated in the literature between elementary unification and the so-called
unification with linear constant restrictions. Their interest here lies primarily
in the connection with admissibility of non-standard Π2-rules over logics. We
supplied some first results and we discuss here several natural open questions.



Almeida and Ghilardi 19

One natural question that applies to logics, is whether the admissibility of
more complex logical rules could be related to unification with linear constant
restrictions. Such a question can be motivated also from a model theoretic
point of view, since it is connected to decision problems for the positive theory
of free algebraic structures.

Finally, and most importantly, it would be interesting to explore unification
with simple variable restrictions for systems not covered by the results of the
present paper. A natural example in this sense is the modal logic system S4,
which is well-known not to enjoy uniform interpolation [16]. We note that the
obvious approach to attack this problem – a generalization of the projective
approximations from [13] – does not work in the obvious way, since the key
technique of Lowenheim Substitutions seems not to be available.

Appendix

In this appendix we collect some missing (mostly folklore) technical proofs.

(A) Proof of Proposition 3.5

We recall that, given finite sets of variables Z,Z ′ and a substitution σ with
domain Z and codomain Z ′, we can canonically associate with it the homo-
morphism η(σ) : F(Z) −→ F(Z ′) mapping the equivalence class of a term
t ∈ FmL(Z) to the equivalence class of the term σ(t) ∈ FmL(Z

′). This corre-
spondence is bijective, if we identify substitutions up to =E : for that reason we
always used the same letters σ, τ, . . . for substitutions and free algebra homo-
morphisms. In this subsection, however, we conveniently distinguish between
σ and the associated homomorphism η(σ). Also note that the correspondence
σ 7→ η(σ) commutes with compositions, in the sense that it maps the compo-
sition of substitutions into the compositions of homomorphisms.

In addition, notice that if X,X ′, C are finite disjoint sets, and η(σ) : F(X ∪
C) −→ F(X ′∪C) is the free algebras homomorphism induced by a C-invariant
substitution σ, then there is a substitution σ : F(X) → F(X ′) such that
η(σ) ≃ η(σ) + 1, up to the isomorphisms F(X) + F(C) ≃ F(X ∪ C) and
F(X ′) + F(C) ≃ F(X ′ ∪ C).

Proposition 3.5 Let (PC) a E-unification problem with simple variable re-
striction. If A is a finitely presented algebra with presentation (PC), then the
antisymmetric quotients of the preordered sets Usvr

E (A, C) and Usvr
E (PC) are

isomorphic.

Proof. Let (PC) be the unification problem with simple variable restriction

(PC) = (s1, t1), ..., (sk, tk)

where X = {x1, ..., xn} ∪ C = {c1, ..., cm} are the disjoint sets of variables
occuring in these terms. The corresponding finitely presented algebra algebra
A is F(X ∪ C)/S where S is the smallest congruence generated by the set of
pairs {(s1, t1), ..., (sk, tk)}.

Define now a map e : Usvr
E (PC)→ Usvr

E (A, C) as follows: let σ ∈ Usvr
E (PC),

and suppose that Y ∪ C is its codomain, where Y are the variables occurring
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in the terms σ(x1), ..., σ(xn) (note that this set is disjoint from C). Thus σ can
be restricted to a substitution σ with domain X and codomain Y . Such σ and
σ induce homomorphisms

η(σ) : F(X) −→ F(Y ), η(σ) : F(X ∪ C) −→ F(Y ∪ C)

such that η(σ) + 1 = η(σ). We put e(σ) := η(σ). Recalling the definitions
from Section 3 and Subsection 3.1, it is clear that σ ∈ Usvr

E (PC) iff e(σ) ∈
Usvr
E (A, C) (in fact e(σ)∗ × 1 = η(σ)∗ × 1 = η(σ)∗ factors through A iff the

kernel of η(σ) contains the equivalence classes in F(X∪C) of the pairs of terms
(s1, t1), ..., (sk, tk), which precisely means that σ unifies them).

The map e : Usvr
E (PC) → Usvr

E (A) is bijective up to =E equivalence of
substitutions, thus it becomes a real bijection when we identify substitutions
up to the comparison order. This order is preserved and reflected by e if
we compare the preordered sets Usvr

E (A, C) and Usvr
E (PC) using the equivalent

definition for Usvr
E (A, C) given by the Remark 3.4 of Subsection 3.1. In fact, for

two substitutions σ1 : FmL(Z) −→ FmL(Z1) and σ2 : FmL(Z) −→ FmL(Z2),
we have that σ1 ≤ σ2 iff there is a substitution θ : FmL(Z2) −→ FmL(Z1)
such that η(θ ◦ σ2) = η(θ) ◦ η(σ2) = η(σ1). 2

(B) r-Regularity of Algopfp(E)

Proposition A.1 Let E be an equational theory enjoying coherence and (IT).
Then Algopfp(E) is an r-regular category.

Proof. The fact that Algopfp(E) has all finite limits is immediate, given the

standard fact that Algopfp(E) has all finite colimits. To see the factorization

properties, assume that f∗ : B∗ → A∗ is a map of Algopfp(E); then f : A → B is
a homomorphism, which as usual has an image factorization

A f−→ Im(f)
i−→ B.

Note that Im(f) is a finitely generated subalgebra of B, since it is a quotient
of the finitely presented algebra A; hence by coherence, Im(f) is itself finitely
presented; this means that the image factorization lives inside of the category
Algopfp(E), and hence by duality, Algopfp(E) has the desired factorization proper-
ties.

Finally, assume that we have a pullback square as in the Figure below, and
that g∗ is an epimorphism. By (IT) and duality, there exist an epimorphism
p : E∗ → B∗ and a homomorphism p′ : E∗ → C∗ commuting the outer square
below. Since D∗ is a pullback, there is a connecting morphism k : E∗ → D∗; but
this means that h2 is an epimorphism as well, since it is the second component
of an epimorphism. 2
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URL https://arxiv.org/abs/2311.07189

https://arxiv.org/abs/2311.07189


Almeida and Ghilardi 21

E∗

D∗ B∗

C∗ A∗

p

p′

k

h1

h2

g∗

[2] Baader, F. and S. Ghilardi, Unification in modal and description logics, Logic Journal
of IGPL 19 (2010), pp. 705–730.
URL https://doi.org/10.1093/jigpal/jzq008

[3] Baader, F. and K. U. Schulz, Unification in the union of disjoint equational theories:
Combining decision procedures, Journal of Symbolic Computation 21 (1996), pp. 211–
243.
URL https://www.sciencedirect.com/science/article/pii/S0747717196900097

[4] Baader, F. and J. Siekmann, Unification theory, in: D. M. Gabbay, C. J. Hogger and J. A.
Robinson, editors, Handbook of logic in artificial intelligence and logic programming:
Volume 2: Deduction methodologies, Handbook of Logic in Artificial Intelligence and
Logic Programming, Clarendon Press, Oxford, England, 1994 pp. 41–101.

[5] Baaz, M. and H. Veith, An axiomatization of quantified propositional Gödel logic using
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