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1
Preliminary Notions

This chapter serves to set up the main concepts needed to begin read-
ing the paper. (...)

1.1 Morley’s Theorem

This section is heavily based on Chapter 7.1 of [CK12], the reader is
encouraged to consult this for more information.

We start off by restating the target theorem, Morley’s theorem.

Theorem 1.1.1 (Morley). Let L be a countable language, and let T be a
first-order L-theory that has infinite models, and is categorical in some un-
countable power. Then T is categorical in every uncountable power.

Here is a refresher on saturated models, which will be used in the
proof:

Definition 1.1.2 (Saturated model). Let M be a structure, and X Ď

M. We write MX to denote the model M expanded to the language
containing a new constant symbol, cx, for every element x P X, with
each cx interpreted as the element x.

Let M be a structure, and κ an infinite cardinal. We say that M is
κ-saturated iff, for any X Ď M with |X| ă κ, every type that is finitely
realised in MX is realised in M.

We say that M is saturated iff M is κ-saturated for κ = |M|.

Theorem 1.1.3. Let M be an infinite model, and let κ be an infinite cardinal.
Then M has a κ-saturated elementary extension N. (Note that N might not
be same cardinality of M! It might be much bigger)

Proof. (Adapted from van den Berg (2018), ‘Syllabus Model Theory
2018/2019’)

We will find a model which is κ+-saturated; we need a regular car-
dinal to make the proof work, and it is immediate from the definition
of κ-saturation that such a model must also be κ-saturated.

We build the new model N in κ+ many stages. For successor or-
dinals α + 1, let Mα be the model constructed so far. Let A denote
the universe of Mα. Let (pi(x))iPI be an enumeration of all types over
Th((Mα)A). Let tbi | i P Iu be a collection of fresh constant symbols.
Consider the theory Tα+1 := Th((Mα)A)Ytpi(bi) : i P Iu. This theory
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is finitely satisfiable by assumption, so by the Compactness theorem,
it’s satisfiable. Set Mα+1 to be some model of Tα+1- it will then be
an elementary extension of Mα, since Tα+1 includes the elementary
diagram of Mα.

For limit ordinals γ, define Mγ to be the union of the chain (Mα)αăγ.
Then Mγ is an elementary extension of each of the Mα. Here we use the closure property of ele-

mentary classes under unions of chains.
Recall that AECs also have this prop-
erty!

Keep going until we reach Mκ+ . Now consider any X ĎMκ+ with
|X| ď κ+, and any finitely realisable type p(x) over (Mκ+)X . By the
regularity of κ+, there must be some α ă κ+ such that X Ď Mα. But
then p(x) is realised in Mα+1 by construction, and the same element
will realise p in Mκ+ . ˝

To prove Morley’s theorem, we will need many, many lemmas.
Here’s the first one:

Lemma 1.1.4. Let L be a countable language, and let T be a complete
L- theory such that every model of T of cardinality ω1 is saturated.
Then every uncountable model of T is saturated.

Proof. We proceed by contraposition: we suppose that T has an un-
countable model which is not saturated, and find a model of T of size
ω1 which is not saturated.

Let A be a model of T which is not saturated. Then let X be a
subset of A, with |X| ă |A|, and let p(x) be a type over AX , such
that p is finitely satisfiable in Th(AX) but not realised in AX . We now
let U Ď A be any subset of A such that |U| = |p|. (Observe that
|U| = |p| ă |A|, because L is countable and |X| ă |A|.)

˝

1.2 Abstract Elementary Classes

This section is modelled after [Gro02]; the reader is encouraged to
consult this for more information.

Definition 1.2.1. Let xK, ĺKy be a pair consisting of a collection of
structures K for some language L(K), and a relation ĺK holding be-
tween these structures, such that:

1. ĺK is a partial order.

2. If M ĺK N then M is a substructure of N.

3. (Isomorphism closure): K is closed under isomorphism, and if M, N, M1, N1 P

K, f : M – M1 and g : N – N1, f Ď g and M ĺK N then M1 ĺK N1.

4. (Coherence): If M ĺK N and P ĺK N, and M Ď P, then M ĺK P.

5. (Tarski-Vaught Axioms): If γ is an ordinal and tMα : α P γu Ď K is
a chain under ĺK, then

•
Ť

αPγ Mα P K;

• If Mα ĺK N for all α P γ then
Ť

αPγ Mα ĺK N.
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6. (Lowenheim-Skolem Axiom) : There exists a cardinal µ ě |L(K)|+ Given an AEC xK, ĺKy we denote by
LS(K) the least µ in the conditions of
the LS-axiom, and call it the Lowenheim-
Skolem number.

ℵ0, such that if A is a subset of M P K, then there is N such that
A Ď N, |N| ď |A|+ µ and N ĺK M.

Given such an AEC, a map f : M Ñ N where M, N P K is a K-
embedding if f [M] ĺK N, and f is an isomorphism from M onto f [M].

Let us consider some examples:

Example 1.2.2. If K is an elementary class, i.e., K = Mod(T) for some Originally this paragraph claims when
ĺK is given elementary embedding, the
resulting class will be an AEC, which is
not true. Again, axiom 2 means M ĺK N
implies M is a substructure of N. Of
course, none of these nitpicking things
survive once we consider accessible cat-
egories, which generalise AECs (cf. next
Section).

theory T, then it is an abstract elementary class with the relation ĺK

being given by elementary substructure. The two first axioms are triv-
ial, and isomorphism closure, coherence, the Tarski-Vaught axioms
and the Lowenheim-Skolem axiom are all properties known in classi-
cal model theory. The Lowenheim-Skolem number is |T|+ ℵ0.

Of course we would not be interested in abstract elementary classes
if this were the only example on hand. The key motivation of the the-
ory lies in the fact that some classes are, from a certain point of view,
very natural, and do not look too wild to be analysed through model-
theoretic methods. For example we have

• Finitely generated groups;

• Archimedean fields;

• Connected graphs;

• Noetherian rings;

• The class of algebraically closed fields with infinite transcendence
degree.

It seems like there should be some setting in which one could study
these models that offered tools to classify them. But it is not immedi-
ately obvious what that would be. For the majority of the 20th cen-
tury, it was judged that the way forward would be to construct lan-
guages which could “tame” these classes. Let us turn to some exam-
ples of this kind; for general references on infinitary logic, the reader
can consult [Kar64; Mar02; Dic85]:

Definition 1.2.3. Let κ and λ be regular cardinals and λ ď κ . Let τ Regularity of the cardinals is assumed
to ensure that any formula ϕ has at most
κ many subformulas; also λ ď κ is a
sanity condition given we maintain our
atomic formulas finite (which is not nec-
essary, but very convenient).

be a first order vocabulary. We denote by Lκ,λ(τ) the language con-
structed using

Ž

κ ,
Ź

κ and Dλ and @λ:

(1) Terms and atomic formulas are as in first order logic;

(2) If ϕ is a formula then so is ␣ϕ;

(3) If (ϕα)αPκ is a collection of less than κ formulas, then
Ź

αPκ ϕα and
Ž

αPκ ϕα are formulas;

(4) For a formula ϕ and variables xα for every α P λ, we have formulas
DαPλϕ(xα) and @αPλϕ(xα).

We let:
L8,λ =

ď

κPOrd

Lκ,λ
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We briefly mention some notions which are relevant here. Namely,
given two first-order theories M, N, we write:

M »8,ω N,

If and only if the two structures satisfy the same formulas from L8,ω.
An equivalent, and more useful, characterization due to Karp uses
the notion of a partial isomorphism system.

Definition 1.2.4. Let M, N be two first order structures in a language
τ. We say that a collection P of partial τ-embeddings f : A Ñ N
where A Ď M is a partial isomorphism system if:

• For all f P P, and a P M, there is some g P P such that f Ď g and
a P dom(g);

• For all f P P and b P N, there is g P P such that f Ď g and b P
img(g)

We write M –p N if there is a partial isomorphism system between
these two structures.

The following relates this concept to Ehrenfeucht-Fraisse games,
to the above notion of infinitary equivalence, as well as to some set-
theoretic notions.

Theorem 1.2.5. The following are equivalent for M, N:

1. M »8,! N;

2. M –p N;

3. Player II has a winning strategy in the Ehrenfeucht-Fraisse game G(M, N);

4. There is a forcing extension V[G] such that V[G] ( M – N (i.e., the
structures are isomorphic in a forcing extension).

Proof. The equivalence of 1-3 is known as Karp’s theorem; for a good
proof see [Mar02, Theorem 2.1.4]. The equivalence with (4) is a known
set-theoretic fact, mentioned in [Mar02, Exercise 2.1.8] ˝ This uses essentially the fact that the

language L8,ω is absolute, and con-
structs the extension using a forcing
poset consisting of a partial isomor-
phism system.

For the most part we will look at infinitary logics with finite quan-
tifiers. We will also need the notion of a fragment:

Definition 1.2.6. Let A Ď L8,ω be a set of formulas in the language
τ such that there is an infinite set of variables V, such that if ϕ P A

then all of its variables occur in V. We say that A is a fragment of τ if
A satisfies the following closure properties:

1. All atomic formulas using only the constant symbols in the vocab-
ulary τ and the variables in V are in A;

2. A is closed under subformulas;

3. A is closed under substitution of terms assembled from V: if ϕ P A

and v is free in ϕ and t is a term with all of its variables in V, then
the formula obtained by replacing all instances of v in ϕ by t is in
A;
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4. A is closed under formal/single negations;

5. A is closed under ␣,^,_, Dv,@v for v P V.

If A Ď Lω1,ω, and |A| ď ℵ0, we say that it is a countable fragment.

The following definition is the crucial one:

Definition 1.2.7. Let M and N be structures in a language L, and A

is an L-fragment. We write M ĎTV,A N if and only if:

1. M Ď N and,

2. For every a P M and every formula ϕ(y, x) P A, if N ( Dyϕ(y, a),
then there exists some b P M, such that N ( ϕ(b, a).

Example 1.2.8 (Models of a countable infinitary theory). Let T be a
countable theory in a language L, and let A be a fragment containing
T. Let K = Mod(T). Let M ĺK N if and only if M ĎTV,A N. Then The restriction to countable theories is

sharp: it is not hard to find a theory T,
in a countable language, of Lω1 ,ω which
models are at least of size 2ℵ0 .

xK, ĺKy is an abstract elementary class. The trickier parts to verify
are the Lowenheim-Skolem and the union axiom; but both of these
follow by the same proofs as their first-order correspondents.

However AEC’s are not at all limited to examples coming from
logic. Let us see some preliminary examples, and then conclude with
a wild, unexpected, example, which breathed new life to the field.

Example 1.2.9 (Noetherian Rings). Let K be the class of noetherian
rings. We define R ĺK S if and only if R is a subring of S, and R »8,ω

S. Note that then R is noetherian if and only if S is noetherian. To
see this, note that if we assume that R is noetherian and S is not, then
(by an equivalent characterization), there is f1, f2, ..., a sequence of
elements such that for every integer n there is some fi, such that fi

cannot be written in terms of the smaller elements. Then we claim that
Player I has winning strategy in an unbounded Ehrenfeucht-Fraisse
game: successively pick elements from that sequence. Once the game
is played out, whatever Player II has chosen, say a sequence g1, g2, ...,
there must be an integer n such that each gi is a linear combination
of gk for k ď n. But then this sequence cannot be isomorphic to the
former.

It is clear that if R ĺK S then R is a substructure of S, and isomor-
phism closure and coherence are obvious. The Tarski-Vaught axiom
follows from the fact that chains of models respect the »8,ω relation.
I could not prove the Lowenheim-Skolem axiom, though Grossberg’s
notes claim it (Shrug).

Perhaps the most striking example – and one which in part revived
the interest in this topic from the point of view of mainstream mathe-
matics – is in the work of Boris Zil’ber’s “Schanuel’s Structures”.

Definition 1.2.10. Let Ke be defined as:

Ke := txF,+, ¨, expy :F is an alg. closed field of characteristic zero,

@x@y(exp(x + y) = exp(x) ¨ exp(y))u
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also let

Kpexp := txF,+, ¨, expy P Ke : ker(exp) = πZu.

We consider the class of Schanuel structures to be the class Kexp Ď

Kpexp which satisfies some conditions, amongst them the Schanuel
condition.

We are willfully vauge on the extra con-
ditions, as they are not important, ex-
cept for the Schanuel condition. For
more information on this, check [Mar02,
Chapter 8], and see also Will Boney’s
notes on this topic.

This essentially imposes that the so-called “Schanuel conjecture”
be true:

Conjecture 1.2.11 (Schanuel,1960). Assume that x0, ..., xn P F are lin-
early independent over Q. Then Q(x0, ..., xn, exp(x0), ..., exp(xn)) has
transcendence degree at least n over Q.

To understand the significance of this, it
should be noted that the study of tran-
scendental numbers is one of the most
unexplored and difficult areas of num-
ber theory.

Schanuel’s conjecture is a piece of machinery that would clarify
many difficult conjectures in transcendental number theory. As a toy
example, recall that it is widely assumed that e + π is transcendental,
though no proof of it is in sight; this would immediately fall off from
the above result: if we set x0 = 1 and x1 = π ˚ i, then Q(π, e) (the
result of the field extension) would have transcendence degree at least
2, showing that there is no polynomial f (x, y) such that f (π, e) = 0;
this implies that e + π is transcendental.

Now what Zil’ber did was note that Kexp can be given a relation
ĺ, forming an abstract elementary class. Additionally, using some
heavy model-theoretic and number-theoretic weaponry, he managed
to prove that:

Theorem 1.2.12. The theory Kexp has a unique model of cardinality 2ℵ0 .

Thus, the only problem lies in proving that this model is indeed
the model of the complex field C, i.e., prove that the latter has the
model-theoretically desirable properties. This is an active research
area today.

Such examples motivate the idea that abstract elementary classes
are indeed ubiquitous, and serve as a strong foundation for explor-
ing non-trivial solutions to mathematical problems. However, as dis-
cussed in the logical dream, just like for first-order logic, this appears
as a matter of finding the right “dividing lines”. Hence we can en-
counter our appropriate generalization of Los’ conjecture:

Conjecture 1.2.13 (Shelah). Let K be an AEC. If there is a λ ě ℶ2LS(K))+

such that K is categorical in λ, then K is categorical in all µ for µ ě

ℶ2LS(K))+ .

1.3 Accessible Categories

A warning: we do not mention sketches
in our presentation. While they play a
central role in the books that introduced
accessible categories, they are not as
necessary for modern treatments, which
is why we have chosen not to include
them here. Similarly goes for synthetic
categories as theories, but for different
reasons.

In the category of sets, we have the special property that the elements
of a set X (its internal structure) correspond exactly to maps from the
terminal object to X (its external structure), i.e. HomSet(1, X) – X.
This is not the case for all categories in general. For a wider class of

https://bpb-us-e1.wpmucdn.com/wp.txstate.edu/dist/0/1970/files/2020/07/ZPEFNotes.pdf
https://bpb-us-e1.wpmucdn.com/wp.txstate.edu/dist/0/1970/files/2020/07/ZPEFNotes.pdf
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categories, the internal structure of objects can still be reflected exter-
nally, but we require more than just one object to ”probe” its internal
structure.

Example 1.3.1. In the category of undirected graphs, the terminal ob-
ject is the single node graph with a reflexive edge. However, graph
homomorphisms from this terminal graph will never reveal anything
about irreflexive nodes.

‚

Figure 1.1: The terminal graph.
What we can do instead is to use two graphs: one graph with a

single irreflexive node (targetting the nodes) and one graph with two
nodes and an edge between them(targetting the edges). Any graph
can be constructed by taking multiple copies of these diagrams (with
some gluing homomorphisms f and g that designate a node to be
the endpoint of some edge). Another way of viewing this is that any
graph can be reconstructed as a colimit of a diagram inside the sub-
category consisting of these two graphs and f , g.

‚ (‚ ‚)
g

f

Figure 1.2: The probing subcat-
egory.

In general the objects that we consider will have to be simple build-
ing blocks: a first candidate is for the object to be ”finite”.

Locally Finitely Presentable Categories

Definition 1.3.2. A diagram D : I Ñ C is directed if I is a directed
poset (considered as a category): every finite subset has an upper
bound.

More succintly, K is finitely presentable
if the hom-functor HomK(C, ´) pre-
serves directed colimits.

Definition 1.3.3 (Finitely Presentable Object [AR94]). An object K of
a category C is finitely presentable if for each directed colimit (Di

ci
Ñ

C)iPI , any morphism f : K Ñ C factorizes uniquely through some ci,
i.e. there exists a ci (not necessarily unique) such that there exists a
unique g : K Ñ Di with f = ci ˝ g.

One can see this example as the moti-
vating example for the above category-
theoretic definition - after all, finiteness
for an object is only well defined in cat-
egories of sets.

Example 1.3.4. The finitely presentable objects in Set are exactly the
finite sets. We sketch why this is the case.

For any set X, the diagram DX consisting of its finite subsets with
inclusion functions is directed with X being the colimit of X. If X
is finitely presentable, then the identity map idX factors as idX =

(DX(i) ãÑ X) ˝ g, but this means g has to be the identity map with
DX(i) = X, where DX(i) is finite.

On the other hand, suppose X is finite, and take any f : X Ñ C and
any directed diagram D with C as colimit. For each x P X, f (x) must
be an element of D(ix) for some ix. However, since D is a directed
diagram and X is finite we can find a D(i) which contains all the
D(ix), and therefore all the f (x). We can then factor f through D(i).

C

f [X] Ď D(i)

f (x1) P D(ix1 ) f (x2) P D(ix2 ) . . . f (xk) P D(ixk )

X

f

Since any set X is a colimit of a directed diagram of finitely pre-
sentable sets DX , we say that Set is locally finitely presentable.

Intuition: C is locally finitely pre-
sentable if the finitely presentable ob-
jects essentially determine the rest of the
category.

Definition 1.3.5. A category C is locally finitely presentable (LFP) if it is
cocomplete and has a set of finitely presentable objects A s.t. every
object is a directed colimit of objects from A.
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Many categories are LFP - in particular, the category of models of
an equational theory (i.e. finitary varieties of algebras) is LFP. We
illustrate this by way of the category of groups.

Example 1.3.6 ([AR94]). A finitely presentable group is a group which
has a presentation xA|Rywith A a finite set of generators and R a finite
set of relations of said generators. The finitely presentable objects in
Grp are exactly the finitely presentable groups1. 1 In fact the general terminology is de-

rived from this.Suppose G is a finitely presentable group. Then analogously to Set,
we can consider the diagram DG of subgroups generated by finitely
many generators (with inclusion maps between subgroups), which
has G as its colimit. Then the identity map idG factors through some
DG(i) and therefore A = DG(i).

For the relations, we again use the same technique of constructing
a diagram and factoring the identity map. We have shown G can
be finitely generated (let’s call this finite set of generators X), so we
can consider the canonical map k : F(X) Ñ G from the free group
generated by X to G. The kernel set

We can think of k as the mapping from
syntax (i.e. elements of the free group)
to semantics (elements of G).

k : F(X) Ñ G

k(x P X) := x

k(e) := eG

k(t1 ¨ t2) := k(t1) ¨G k(t2)

k(t´1) := k(t1)
´1

ker k = t(t, t1) P F(X) | k(t) = k(t1)u

contains all possible relations that hold between the terms when in- Categorically, the kernel set can be con-
structed as the pullback

ker k X

|F(X)| |G|
|k|

|k|

{

terpreted as elements of A. Hence, X generates G using the equiv-
alence relation ker k. Now, we can once again construct a directed
diagram of the groups DG(i) generated by X and using finite subsets
Ei of ker k2 - this diagram has G as colimit, and we can once again

2 i.e. take the congruence closure of Ei .

factor the identity map idG through this diagram (see [AR94, p. 144]
for details, as well as for the proof of the other direction).

Any group is a filtered colimit of its finitely generated subgroups.
Hence, the category Grp is locally finitely presentable. ■

In fact, even some non-equational theories have LFP categories of
models. Consider the theory of partially ordered sets.

Example 1.3.7. In the same way as Set is a LFP, Pos, the category of
posets and monotone maps, is an LFP. Since every poset is the union
of all its finite subsets under the (restricted) ordering, the FP-objects
in Pos are exactly the finite posets.

It can be enlightening to see what a locally finitely presentable
poset.

Example 1.3.8. A poset, seen as a category, is LFP if and only if it is
a complete algebraic lattice. Since algebraic lattices are those which
are generated by joins of finite (compact) elements, it is exactly the
finite elements that correspond to the finitely presentable objects in
the category.

Example 1.3.9. A non-example is the category FinSet of finite sets and
functions. We will come back to this example later.

Limit Theories

In general, we can characterise the locally finitely presentable cate-
gories as the categories of models of a finitary limit theory.
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Definition 1.3.10. Let Σ be a first-order signature of function and re-
lation symbols. We define the category StrΣ of structures interpreting
Σ, with the morphisms being structure homomorphisms.

Definition 1.3.11 (Limit Theory). A set of Lω,ω sentences T is a limit
theory if every sentence in T is of the form

@ÝÑx (φ(ÝÑx )Ñ D!ÝÑy ψ(ÝÑx ,ÝÑy ))

where φ and ψ are conjunctions of atoms.

Definition 1.3.12 (Model Category). Given a theory T in signature
Σ, the category ModT of models of T is the full subcategory of StrΣ
containing structures that satisfy T.

Theorem 1.3.13 ([AR94, p. 207]). C is LFP iff it is equivalent to ModT
for some limit theory T in Lω,ω.

Proof. (sketch) (ð) The category StrΣ is complete, cocomplete and
LFP [AR94, p. 201]3. We show that ModT is closed under limits and 3 StrΣ inherits a lot of its structure from

considering the algebraic structures in-
terpreting its function symbols (forget-
ting the relations).

directed colimits when T is a limit theory. This is enough to show that
ModT is LFP. TODO

(ñ) TODO ˝

We use the theories of groups and posets as concrete examples of
limit theories.

Example 1.3.14. We axiomatise the theory of groups with a constant
symbol e, unary function symbol´´1 and´ ¨´ in the following way:

@x(J ñ x ¨ e = x^ e ¨ x = x)

@x(J ñ D!y(x ¨ y = e^ y ¨ x = e))

@x1, x2, x3(J ñ ((x1 ¨ x2) ¨ x3 = x1 ¨ (x2 ¨ x3)))

Since each sentence is a limit sentence, the theory of groups is a
limit theory. The category of models is exactly Grp.

Example 1.3.15. We similarly axiomatise posets by limit sentences:

@x(J ñ x ď x)

@x1, x2(x1 ď x2 ^ x2 ď x1 ñ x1 = x2)

@x1, x2, x3(x1 ď x2 ^ x2 ď x3 ñ x1 ď x3)

Hence, the theory of posets is also a limit theory. The category of
models is exactly Pos.

Locally Presentable Categories

The correspondence between locally finitely presentable4 categories 4 A more suggestive name in this con-
text would be ”compact categories”and models of finite limit theories suggests that if we move to infini-

tary logic, we must also loosen the finite presentability5. 5 i.e. infinitary logic is no longer com-
pact Is this true? idk I’m tired
We consider only regular cardinals be-
cause otherwise if λ is singular, we may
get an upper bound whose ”size” is
greater than or equal to λ. In particular,
consider the example of the ℵω-directed
diagram of subsets of ℵω .

Definition 1.3.16. Let λ be a regular cardinal. The diagram D : I Ñ C
is λ-directed if I is a poset where every subset of cardinality ă λ has
an upper bound.
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The less succint definition is analo-
gously obtained by replacing ”directed
diagram” with ”λ-directed diagram”.

Definition 1.3.17. Let λ be a regular cardinal. An object C of a cate-
gory C is λ-presentable if HomC(C,´) preserves λ-directed colimits.

C is locally λ-presentable if it is cocomplete and has a set of λ-presentable
objects A s.t. every object is a directed colimit of objects from A.

C is locally presentable if it is locally λ-presentable for some λ.

Going back to our example of a poset, seen as a category, we can
see the difference between an LFP category and an LP category.

Example 1.3.18. A poset, seen as a category, is locally presentable if
and only if it is a complete lattice. Notice here the lack of require-
ment of algebraicity, that the lattice is generated by finite (compact)
elements.

There is an interesting theorem, which we will note for posterity’s
sake but not use in the sequel.

Theorem 1.3.19 (Gabriel-Ulmer). CITE HERE If C is a locally presentable
category (locally finitely presentable), Cop is never locally presentable (lo-
cally finitely presentable), unless it is a poset.

We end with going back to our earlier non-example.

Example 1.3.20. FinSet is not locally presentable since it is not cocom-
plete. To prove this, take all singletons txuwith x P N. Their directed
colimit, seen as union, is all of N, which clearly is not finite.

This shows us that while local presentability generalises local finite
presentablility, it does not include some quite natural categories.

On the logical side, the corresponding language for FPs is L8. Still
allowing the same limit theories, we obtain an analogous representa-
tion theorem as for LFPs.

Theorem 1.3.21. C is locally presentable iff it is equivalent to the category
of models of some limit theory in L8.

In other words, the generalisation to LPs changes the logical lan-
guage to an infinitary one, but the theories are the same. As noted
above, there are many familiar theories that are not limit theories,
such as the theory of finite sets and the theory of linear orders.

Accessible Categories

Accessible categories are locally presentable categories that aren’t nec-
essarily cocomplete.

Compare this with the definition of lo-
cally presentable categories. Note that
the condition for cocompleteness has
been removed.

Definition 1.3.22. A category C is λ-accessible for a regular cardinal
λ if C has λ-directed colimits and C has a set of λ-presentable ob-
jects such that every object in C is a λ-directed colimit of objects from
this set. A category C is accessible if it is λ-accessible for some regular
cardinal λ.

Example 1.3.23. The category of linear orders, LinOrd is accessible.
The finitely presentable objects are exactly the finite linear orders and
every linear order is a directed colimit of these.
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Note that the reason LinOrd is not LP is due to the fact that LinOrd
is not cocomplete.

Example 1.3.24. FinSet is accessible. Every finite set is a presentable
object and thus every object in FinSet is finitely presentable.

Since we no longer require FinSet to be cocomplete, it now fits in
our definition.

Example 1.3.25. All the previous examples of LFPs and LPs are triv-
ially accessible categories.

Basic Theories

Just as LP categories correspond to limit theories, accessible categories
correspond as well to basic theories.

Definition 1.3.26 ([AR94, p. 227]). A formula in L8,8 is called

1. positive-primitive if it has the form DYψ(X, Y)6 where ψ(X, Y) is a 6 We use capital letters to denote a set of
variables being quantified over.conjunction of atomic formulas.

2. positive-existential if it is a disjunction of positive-primitive formu-
las.

3. basic if it has the form @X(ϕ(X)Ñ ψ(X)) where ϕ and ψ are positive-
existential formulas.
A set of L8,8 sentences T is a basic theory if every sentence in T is

basic.

Note that basic theories indeed gener-
alises limit theories because limit sen-
tences of the form

@X(ϕ(X) Ñ D!Yψ(X, Y))

can be replaced by two basic sentences:

@X(ϕ(X) Ñ DYψ(X, Y))

@X, Y, Z(ϕ(X)^ ψ(X, Y)^ ψ(X, Z) Ñ Y = Z)

Example 1.3.27. FinSet is basic since we can axiomatise finite sets via
the sentence

@x0, x1, . . . (
ł

i‰jPω

xi = xj)

.

Example 1.3.28. LinOrd is basic - in particular the sentence

@x, y(x ď y_ y ď x)

is basic.

In some sense7, working with basic theories only causes no loss in 7 I’m not really sure in what ”sense”
this causes no loss in generality, but this
seems like an important thing to know.

generality as compared to working with all theories.

Definition 1.3.29. F Ď L8,8 is a fragment if

1. all atomic formulas are in F .

2. F is closed under substitution of terms for free variables.

3. F is subformula closed.

4. @Xϕ(X) P F implies ␣DX␣ϕ(X) P F and if ϕ Ñ ψ P F then
␣ϕ_ ψ P F .

The F -basic formulas are defined just like basic formulas, except
atomic formulas are replaced by formulas of F
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Definition 1.3.30. Given a fragment F , a structure map h : M Ñ N is
an F -elementary map if h preserves the meaning of all formulas in F ,
i.e. M ( φ[A Ď M] iff N ( φ[h[A]].

Define the category ModF T as models of T but where the mor-
phisms are the F -elementary maps.

Theorem 1.3.31 ([MP89, p. 52]). Given any small fragment F and a F -
basic theory T, the category ModF T is equivalent to ModT1 for some other
basic theory T1 in some other language L1.

AECs are Accessible Categories

This whole subsection follows from CITE HERE, Lieberman
We can see an AEC as a category by letting its models be the objects

and morphisms the strong embeddings between these. The following
theorem connects the story of accessible categories to that of AECs.

Theorem 1.3.32. CITE HERE Let K be an AEC and µ its cardinal defined
in the Löwenheim-Skolem Axiom. Then, K is µ+-accessible. More generally,
K is λ-accessible for all regular cardinals λ ą µ.

It follows that every AEC is accessible. Moreover, we have a char-
acterisation theorem which needs just a little preamble.

Given a signature L over an AEC K, denoted L(K), we can define
the category of L-structures as the category with objects being the L-
structures and morphisms are injective L-morphisms that preserve
and reflect relations in L. We will denote this category by L-Struct.

We now need two definitions to obtain our characterisation. That
of repleteness and being almost full.

Definition 1.3.33. A subcategory D of some category C is replete if
there are no isomorphic objects X – Y such that X P D0 while Y R D0.

In other words, replete subcategories respect isomorphisms. Ex-
amples of these abound: take topological spaces and continuous maps.
Any combination of topological properties forms a replete subcate-
gory, with Haus for Hausdorff spaces, Stone for Stone spaces, and
Sobω for Sober spaces of cardinality ω.

Definition 1.3.34. A subcategory D of some category C is almost full
if for any two objects X, Y, Z in D, with f : X Ñ Z and g : Y Ñ Z, if
there is a h : X Ñ Y in C such that g ˝ h = f , then h is in D as well.

So, D is almost full if it has the base of every commutative triangle
of which it has the other sides. Diagrammatically:

X Y

Z
f g

h

This property corresponds to the coherency axiom for AECs.
Now, we can characterise AECs more precisely as a special form of

subcategory of L-Struct.
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Theorem 1.3.35. Let K be an AEC. Then K is a nearly full, replete sub-
category of L-Struct which is λ-accessible for every λ ŋ µ (where µ is the
cardinal from the Löwenheim-Skolem axiom) and which has all directed col-
imits. (The directed colimits are computed as in L-Struct.)

We have a converse result as well.

Theorem 1.3.36. Any nearly full, replete subcategory of L-Struct which is
λ-accessible for every λ ŋ µ, for some cardinal µ, and which has all directed
colimits which are computed as in L-Struct can be seen as an AEC.

Give the specific construction here.

1.4 Categorical Logic

The essential theme of categorical logic can be formulated as follows:

Theories are (certain types of) categories; Models are (certain types of
functors.

In fact, we have a list of correspondence between different fragments
of logic and various types of categories as follows:8 8 Here =˚ means it allows partial func-

tions, and equality can compare values
of potentially undefined terms.

Logic Category
algebraic (=) fin. product

cartesian (J,^,=˚) fin. limit
regular (cat. + D) regular

coherent (reg. + K,_) coherent
boolean (coh. + ␣) boolean

geometric (coh. +
Ž

) geometric

For each fragment of logic, we require certain categorical structures
to interpret the logical connectives within the logic. The basic ideal is
as follows. Suppose we have a category C, for any object A within,
we view Sub(A) as the predicates in C over A.9 Now the category C 9 Sub(A) is the partial order of monic

maps into A modulo isomorphism. For
two monic maps, i : X ãÑ A and j : Y ãÑ

A, i ď j iff there exists map k : X Ñ Y
that commutes with i, j.

can interpret the logic connective ^, iff for any object A in C, Sub(A)

admits finite meets. It is slightly more involved for other logical con-
nectives, but the essential idea is the same. We refer the readers to
[Car18] for more details.

Theories as Categories

Now suppose we have a theory T within some fragment of logic. For
simplicity and sufficient generality, we suppose T is regular, so that it
allows J,^, D in its language. Since T potentially lacks implication,
its axiomatisation and derivation all involve sequents of formulas of
the following form,

φ $x⃗ ψ.

In the above sequent, φ and ψ are required to be formulas within our
fragment of logic. In our example of a regular theory T, they can
only contain J,^, D as logical connectives. The subscript x⃗ is a list of
variable names called the context of the sequent, and it is required that
all free variables of φ and ψ are contained in this context.
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Given such a theory T, we can construct a corresponding cate-
gory CT , called its syntactic category. It is the first-order analogue of
the Lindenbaum-Tarski algebra of a propositional theory. Its concrete
construction is as follows:

• Objects are of the form (x⃗.φ), where x⃗ is a context and φ is a for-
mula, whose free variables are contained in the context x⃗.10 10 For simplicity, identify α-equivalent

formulas. Two objects (x⃗.φ) and (⃗y.ψ)
are α-equivalent iff there is a bijection
between x⃗ and y⃗, such that ψ is obtained
from φ by substituting its free variables
along this map from x⃗ to y⃗ (with possi-
bly renaming bounded variables). The
upshot is that for any two objects (x⃗.φ)
and (⃗y.ψ), we may assume their con-
texts are disjoint.

• Morphism from (x⃗.φ) to (⃗y.ψ) are T-provably functional formulas
θ(x⃗, y⃗) between them, identified upto T-provable equivalence.11

11 From now on, whenever we write
x⃗, y⃗, z⃗, ¨ ¨ ¨ , we always assume these con-
texts are disjoint; see the above footnote.

Since our theory T may lack implication and universal quantifier,
a formula θ(x⃗, y⃗) is T-provably functional from (x⃗.φ) to (⃗y.ψ) iff the
following sequents are provable in T:12

12 If T even lacks D, then T provably
functional formulas are interpreted as
terms in T.

θ(x⃗, y⃗) $x⃗,⃗y φ(x⃗)^ ψ(⃗y)

φ(x⃗) $x⃗ D⃗yθ(x⃗, y⃗)

θ(x⃗, y⃗)^ θ(x⃗, z⃗) $x⃗,⃗y,⃗z y⃗ = z⃗

Theorem 1.4.1. For any theory T in some fragment of logic, its syntactic
category CT will be a category of the corresponding type of the logic. More-
over, for any (small) category C of some type, there exists some theory T in
its corresponding fragment of logic such that C » CT .

The above theorem justifies the identification of (particular frag-
ments of) theories with (certain types of) categories.

1.5 Models as Functors

The importance of the syntactic category lies in the fact that it is the
representable object of the (2-)functor T-mod, which takes a category
E to its category of T-models within E . This sounds like a mouthful,
but let us see closely what this sentence really says.

Again, consider a, say regular, theory T. Suppose M is a model of
T, then we can naturally associate a functor from FM : CT Ñ Set as
follows,

• For object (x⃗.φ), FM sends it to the following definable subset,13 13 Notice that α-equivalent formulas de-
fine the same definable subset, hence
this is well-defined.FM(x⃗.φ) = t a⃗ P Mn | M |ù φ[⃗a] u.

• For each T-provably functional formula θ from (x⃗.φ) to (⃗y.ψ), FM

sends it to the function whose graph is defined by θ.14 14 Again, notice that T-provably equiv-
alent formulas must define the same
graph, hence this is well-defined.The intuition is that since C is built out of syntactic objects, any

model M can interpret these syntactic objects, and produce corre-
sponding definable subsets of M. Furthermore, such a functor FM

must preserve the corresponding logical/categorical structure within
CT . For instance, we must have

FM(x⃗.φ^ ψ) = FM(x⃗.φ)X FM(x⃗.ψ),

and similarly for other logical connectives (that exists in T).
We turn the above observation into a definition:
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Definition 1.5.1. Let T be some theory in a fragment of logic, and let E
be a category of its corresponding type. A model of T in E is defined to
be a functor from CT to E that preserves the logical/categorical struc-
tures within this fragment.

More precisely, we have the following definition,

T-mod(E) := Fun˚(CT , E),

where the right hand side is the category of functors from CT to E that
preserves the corresponding logical/categorical structures, with mor-
phisms being natural transformations. This way, we can talk about
models of T in any (suitable) category E .



2
Introduction to Topos Theory

In this chapter we introduce the basic philosophy of topos theory.

2.1 What is Topos Theory About?

We start with an explanation of a common theme in mathematics.
Suppose now X is some space. For concreteness, let us assume X to be
a ”nice” topological space. Associating to X there are two important
aspects we can consider:

• Geometry: points on X: t x : X u, which will be equipped with a
continuous structure, viz. topology;

• Algebra: continuous functions on X: C(X) = t f : X Ñ R u, which
will be equipped with an algebraic structure, viz. an R-algebra.1 1 An R-algebra is a commutative ring

equipped with a compatible R-action.
Here the ring structure on C(X) is de-
fined point-wise using the ring struc-
ture on R, and the R-action is simply
given by multiplying a constant to a
function.

Notice that our notation suggests we really want to distinguish a
space X with its set of points t x : X u equipped with a topology.
The reason for this will become more clear later. The two aspects are
related to each other in the following manner:

1. Any f P C(X) will induce a function from points t x : X u to R

x ÞÑ f (x),

that respects the geometric structure, i.e. it will be a continuous
map between topological spaces (simply by definition).

2. Any x P t x : X uwill induce a function evx from C(X) to R,

f ÞÑ f (x),

that respects the algebraic structure, i.e. it will be a homomorphism
between R-algebras.

All things we have said so far seem very trivial, but they embodies
an absolutely essential philosophy of modern mathematics: the duality
between geometry and algebra. From a more categorical perspective,
we actually have the following picture:

t y : Y u

α

��

C(Y)

t x : X u C(X)

α˚

OO
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Here α denotes a continuous morphism between topological space. It
induces a homomorphism between R-algebras,

α˚ : C(X)Ñ C(Y),

essentially by precomposing with α,

Y

α˚( f ) ��

α // X

f
��

R

From this perspective, the (1) and (2) above can actually be realised
as special cases when t y : Y u is a one-point space: A point in X is the
same as a continuous map from the one-point space to X that selects
this point, and evx is exactly given by precomposition with this map.2 2 Notice that the algebra of continuous

functions on a one-point space is exactly
given by R itself.

The deep fact is that, at least in good cases, the two perspectives
are equivalent, and these results are usual denoted as duality result.
For compact Hausdorff spaces, this is usually called Gelfand duality;
for Boolean algebras, this is called Stone duality.

Notice that in these types of duality, we can always find a special
object that serve as both a geometric object and an algebraic object. In
the above example, this object is R. We have secretly used the fact that
R can be both viewed as a space and an algebra; we already require
both to even define C(X) and show it has an R-algebra structure.

Now we argue that the very same set of ideas works for theories
as well. Let T be any theory.3 There are again the following two 3 At this point we do not impose any re-

striction on T except insisting it is first-
order.

perspectives on T:

• Algebra: The syntactic category CT can be thought of the algebra of
Set-valued functions on T.

• Geometry: Any model M of T induces an evaluation functor

2.2 Grothendieck toposes

In this section we will define the notion of a Grothendieck topos over
Set. Almost all of the material comes from [Car18]. For the sake of
simplicity we bluntly ignore all size issues. We begin by recalling the
following fundamental construction in category theory.

Definition 2.2.1. Let C be any category. We denote by pC the category of
presheaves on C. Its objects are presheaves, i.e. functors from Cop Ñ Set,
and its morphisms are natural transformations.

A Grothendieck topos will be a certain kind of full subcategory of
a category of presheaves. The presheaves that belong to this subcat-
egory will be called sheaves, but exactly which presheaves those are
depends on additional data.

Definition 2.2.2. A sieve4 S on an object C of some category C is a 4 Die-hard category theorists equiva-
lently define a sieve on C to be any sub-
functor of YC.

collection of arrows with codomain C that is closed under precom-
positon. That is, if f P S and dom( f ) = D, then g f P S for every
arrow g in C with cod(g) = D.



20 SHELAH ’S EVENTUAL CATEGORICITY CONJECTURE

If S is a sieve on C and f : C1 Ñ C, we define the pullback of S along
f by f ˚ := tg : D Ñ C1 : f g P Su. The maximal sieve on C is the
collection of all arrows with codomain C.

Definition 2.2.3. A Grothendieck topology on a category C is a function
J assigning to each object C of C a collection J(C) of covering sieves on
C, such that for each object C:

1. J(C) contains the the maximal sieve on C. (Maximality)

2. If S P J(C) and f : C1 Ñ C, then f ˚S P J(C1). (Pullback stability)

3. If R is a sieve on C and S P J(C) such that for every f P S it holds
that f ˚R P J(dom( f )), then R P J(C). (Transitivity)

A pair (C, J) of a category equipped with a Grothendieck topology
is called a site.

Example 2.2.4. • The trivial topology on a category C is the Grothendieck
topology whose covering sieves are precisely the maximal sieves.

• Given a topological space X, consider the category O(X) of opens
of X. There is a natural Grothendieck topology JO(X) on O(X)

where the covering sieves of an open U are precisely the open cov-
ers of U.

A site contains enough information to determine which presheaves
are sheaves. We first need two more definitions.

Definition 2.2.5. Let P be a presheaf and let S be a sieve. A matching
family assigns to each arrow f : D Ñ C in S an element x f P P(D) such
that P(g)(x f ) = x f g for every arrow g : E Ñ D. An amalgamation for
such a family is an x P P(C) such that P( f )(x) = x f for every f P S.

Definition 2.2.6. A sheaf on a site (C, J) is a presheaf P in pC such that
every matching family on a covering sieve S in J(C) for some object
C of C, has a unique amalgamation. The category of sheaves on (C, J) is
the full subcategory of pC given by the presheaves that are sheaves.

Finally, we are ready to define the our notion of topos.

Definition 2.2.7. A Grothendieck topos is any category of sheaves on
some site.

Example 2.2.8. • The category Set is the the category of sheaves of
the one point topological space under some topology.

• The category of presheaves on C is the category of sheaves on C
equipped with the trivial topology.

• If X is a topological space, the category of sheaves on (O(X), JO(X))

corresponds to the ordinary notion of sheaves of sets on the topo-
logical space X.

We shall use the following notion of morphism between toposes.
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Definition 2.2.9. A geometric morphism f : E Ñ F between toposes is
a pair f ˚ % f˚ of adjoint functors f˚ : E Ñ F and f ˚ : F Ñ E , such
that f ˚ preserves limits.5 The functors f˚ and f ˚ are, respectively, 5 Note that, as adjoints, f˚ preserves all

limits and f ˚ preserves all colimits.called the direct image and the inverse image of f .

The category Topos has as objects toposes and as morphisms geo-
metric morphisms. If E and F are toposes, we denote by Topos(E ,F )

the category with as objects geometric morphisms E Ñ F and as mor-
phisms from f Ñ g natural transformations f ˚ Ñ g˚.

Recall the notion of a geometric category from Section 1.4. The fol-
lowing theorems show that we can interpret a geometric theory T in
any Grothendieck toposes and, moreover, that models of T are pre-
served along the inverse image of a geometric functor.

Theorem 2.2.10. Every topos is a geometric category.

As a result we have for each geometric theory T and topos E a
category T-mod(E) of models of T in E .

Theorem 2.2.11. The inverse image of a geometric morphism is geometric.

Hence for every geometric morphism f : E Ñ F , we get a geo-
metric functor f ˚ : T-mod(F ) Ñ T-mod(E) defined by composing a
model M : CT Ñ F with the inverse image of f .

2.3 Classifying toposes

Definition 2.3.1. The classifying topos of a geometric theory T is a
topos Set[T] such that there is an equivalence of categories

Topos(E , Set[T]) » T-mod(E),

natural in E .

The above naturality condition means that for any geometric mor-
phism E Ñ F , the square

Topos(F , Set[T]) T-mod(F )

Topos(E , Set[T]) T-mod(E)

»

´˝ f f ˚

»

commutes up to isomorphism.
The model UT of T in Set[T] corresponding to idSet[T] under this

equivalence is called the universal model of T. By taking F to be Set[T]
in the above square, it can be seen that every geometric morphism
f : E Ñ Set[T] corresponds to the model f ˚UT of T in E (up to iso-
morphism).

The classifying topos Set[T] is a representable object for the functor
T-mod which sends a topos E to the category of models T-mod(E).
As a corollary of the (2-categorical) Yoneda Lemma, classifying toposes
are unique up to equivalence.6 6 Can this be seen in a more simple way?

Theorem 2.3.2. Every geometric theory has a classifying topos.
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Proof sketch. The idea is to equip the syntactic category CT with a
Grothendieck topology JT . Given an object (⃗y.ψ), we let the cover-
ing sieves of JT to be those sieves tθi(x⃗, y⃗) : (x⃗i.φi) Ñ (⃗y.ψ) | i P Iu
such that

ψ $y⃗
ł

iPI

Dx⃗i.θi

is provable in T. It can be proven that this (CT , JT) is a site and, more-
over, that the topos of sheaves over (CT , JT) is the classifiyig topos for
T. ˝

Theorem 2.3.3. Every topos is the classifying topos of some geometric the-
ory.

Proof sketch. Let Sh(C, J) be the category of sheaves over the site (C, J).
The idea is to explicitly construct a geometric theory T for which
Sh(C, J) is the classifying topos. The signature for T consists of a type
xCy for each object C of C, a function symbol x f y for each arrow f of C,
and a relation symbol xRy for each subobject in C.

In this signature, we let T be the theory of so-called J-continuous
flat functors on C. For any topos E , a model of T in E corresponds to a
J-continuous flat functor from C to E . This correspondence lifts to an
equivalence of categories, i.e. we have

FlatJ(C, E) » T-mod(E).

By a result known a Diaconescu’s theorem, it holds that

Topos(E , Sh(C, J)) » FlatJ(C,F ),

hence we obtain the required result. ˝

Classifying toposes often have a more familiar shape, as illustrated
by the following example.

Example 2.3.4. The theory Tint of intervals is formulated in the sig-
nature with one-sort, a single binary relation ď, and two constants b
and t. Its axioms are:

J $x x ď x

x ď y^ y ď z $x,y,z x ď z

x ď y^ y ď x $x,y x = y

J $x x ď t^ b ď x

b = t $ K

J $x,y x ď y_ y ď x

The classifying topos of Tint is the category of simplicial sets.



3
Infinitary Logic

Christian Espindola’s proof of an infinitary generalisation of Deligne’s
theorem [ESP20] has a number of moving parts: it is intuitionistic, in-
finitary, done using a category theoretic language and apparatus, and
involves some cardinal assumptions (in [Esp19], this involves large
cardinals; in [ESP20] this involves assumptions like κăκ = κ). Speak-
ing personally, this can make it difficult for me to understand what is
going on in the proof, even if the core idea is more or less clear.

3.1 A Tour in Known Lands

So I propose we take a number of steps back. Let us start somewhere
really far back from this setting, and work our way up to it: classical
propositional first order-logic. We will set up a blueprint for the kinds of
questions we are interested in. Throughout I assume familiarity with
the basics of this theory, as well as with Stone duality and the basic
algebraic completeness one finds in this.

There are in general two ways to obtain completeness theorems for
various logics. One, is the algebraic, or more or less syntactic way: we
construct an algebraic model (of whatever kind) for our logical theory,
and we use something like a free algebra, a term model, or a syntactic
category, to do the job. Usually there is a clear and obvious choice
for such models, which derives immediately from the axioms of our
logic. In the case of the logic L(ω), basic propositional logic with
an infinite number of propositions, we will arrive at the concept of
a Boolean algebra. We use them as models by considering valuations
v : Prop Ñ B, which are lifted to the whole term algebra in the usual
way, and write:

B ( ϕ

if and only if for all valuations v, v(ϕ) = 1. To show completeness, we
construct a Lindenbaum-Tarski algebra F(ω) (called the free Boolean
algebra on ω-generators, by taking the term algebra Tm(ω) and quoti-
enting it by our axioms, i.e., saying that the pair (ϕ^ ϕ Ñ ψ, ϕ^ ψ),
interpreted as meaning ϕ ^ ϕ Ñ ψ $ ϕ ^ ψ, should be equal. This
happens to be the unique countable atomless Boolean algebra). So far
all good. We will refer to these as Algebraic completeness theorems.

However, despite the best efforts of algebraic logicians and set the-
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orists alike, human beings seemingly do not cope very well with Boolean
valued semantics. So we are normally also interested in a second kind
of completeness theorem, which for reasons that will be explained
later, I will refer to as a Relational Completeness Theorem.

In the propositional case this is very simple: a model is a valuation
v : PropÑ t0, 1u, which we lift through the usual inductive clauses to
all formulas, generating v : Form Ñ t0, 1u. Surely our logic for these
models is sound as well; so we only have to deal with completeness.
Let us see how this is done in detail:

Proposition 3.1.1. Propositional logic is relationally complete.

Proof. The proof follows the following steps:

• We assume that Γ & ϕ, and hence Γ Y t␣ϕu is a consistent set of
formulas.

• Taking the equivalence classes of these formulas, we have that [Γ]Y
t[␣ϕ]u is then a subset of B, with the property that it generates a
proper filter.

• By the prime filter theorem, this can be extended to a prime filter,
which on a Boolean algebra is an ultrafilter, i.e., a Boolean homo-
morphism v : F(ω) Ñ t0, 1u. Composing this map with the iden-
tity map from Prop Ñ F(ω) assigning to each variable its value,
provides the valuation we wanted.

˝

Essentially, the key to going from an algebraic to a relational com-
pleteness theorem is, as Kristoff pointed out last week, to be able to
extract 2-valued semantics from Boolean valued semantics. For that it
is useful to think about what kinds of Boolean algebras we are work-
ing with.

Definition 3.1.2. Let B be a Boolean algebra. We say that B is complete
if it is complete as a lattice. We say that it is κ-complete if for I such
that |I| ă κ and (ai)iPI then

Ź

iPI ai exists. We say that it is (κ, λ)-
distributive if it satisfies the following: for any sets I and J such that
|I| ď κ and |J| ď λ and for any family (ai,j)i,j of elements in B we
have:

ľ

iPI

ł

jPJ

ai,j =
ł

t
ľ

iPI

ai, f (i) : f P J Iu

We say that B is atomic if every elements lies above an atom.

Complete and atomic Boolean algebras are simply those of the form
P(X) for a given set X. Whilst they form our prototype of a Boolean
algebra, not all Boolean algebras are of this form, as for instance F(ω)

is not atomic, and also not complete.
A consequence of the proof of the relational consequence theorem

we gave above is that we get a sharper algebraic completeness theo-
rem: classical logic is sound and complete with respect to CABAs. To see
why, note that Stone duality, which was implicitly used above, gives
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us a representation of our Boolean algebra as a subalgebra of a com-
plete and atomic Boolean algebra, (namely, the algebra P(X) where X
is the Stone space dual). Since subalgebras preserve validity of equa-
tions, this yields completeness.

Hence, the above blueprint gives us completeness results with re-
spect to complete and atomic Boolean algebras. Interestingly for our
purposes we have the following:

Proposition 3.1.3. A complete Boolean algebra is atomic if and only
if it is completely distributive.

To see why this matters, recall that by a classic result, CABA’s are
dual to the category of set, a mapping which identifies the CABA
with its set of atoms. Atoms are, from this point of view the complete
ultrafilters: ultrafilters which are closed under all meets. Atomicity, in
other words, says that if b is an element of a CABA, it is contained in
such a complete ultrafilter. Hence we have an interesting relationship
between two kinds of representation theorems; we also add the case
of ortholattices, which is interesting on the other extreme:

• Stone’s theorem says that in all Boolean algebras, every element is
contained in some ultrafilter;

• In CABA’s this can be strengthened to a complete ultrafilter.

• In Ortholattices (i.e., Boolean algebras without distributivity), the
lack of distributivity means the prime filter theorem does not go
through. Hence one needs to either use all filters [Gol74; Gol75], or
a cleverly selected collection of such filters.

Now let us think about infinitary propositional logic, and the ques-
tion of how we should generalise this. In light of the above, the an-
swer seems clear: we need a notion of a κ-complete ultrafilter, and to
prove an analogue of Stone’s theorem which works for larger κ. How-
ever it is clear that this cannot work in general; Keisler and Tarski
[KT64] showed that these are large cardinal assumptions. This cer-
tainly looks bad, but it might not be so damning. After all, we do not
need all Boolean algebras to be embeddable in a CABA; only the ones
we are specifically interested in. Let us introduce some terminology:

Definition 3.1.4. Let A be a Boolean algebra. We say that this is an
κ-algebra of sets if it is a κ-subalgebra of a power set algebra.

Stone’s theorem then says:

Theorem 3.1.5. Every Boolean algebra is an ω-algebra of sets.

However, there are well-known examples of ω1-Boolean algebras
(normally denoted as σ-algebras) which are not σ-algebras of sets: an
example is the σ-algebra [0, 1] modulo the ideal generated by the sets
of Lebesgue measure zero. However, this is again not the center of
the problem. To see why let us see now the proof of completeness for
Lω1(ω); this is the logic which only extends propositional logic by
the obvious infinitary discharge and introduction rules, as well as ω1
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many proposition letters. It is here that we see the use of the famous
Rasiowa-Sikorski lemma; we will need it in the following form:

Lemma 3.1.6. Assume that B is a Boolean algebra, and Q = (tXnu)nPω

is a countable collection of countable subsets of B such that
Ź

Xn P B.
Then for each a P B there is an ultrafilter P, called a Q-filter such that:

1. a P P.

2. For each n, Xn Ď P if and only if
Ź

Xn P P.

Proposition 3.1.7. The logic Lω1(ω) is algebraically and relationally
complete.

Proof. The algebraic proof of completeness proceeds in exactly the
same way as before, except we now look at σ-complete Boolean al-
gebras, and generate a free σ-complete Boolean algebra (the same
method applies regardless), call it F()σ(ω).

As our relational models, we consider valuations v : Propω1 Ñ

t0, 1u lifted to the algebra of formulas. It is trivial to show soundness.
For completeness, suppose that &ω1 ϕ; then consider a countably in-
finitary term algebra Tmϕ, constructed from ϕ, including all subfor-
mulas of ϕ, and closed only under finitary Boolean operations. Take the
quotient under derivability in the same way, and note that if

Ź

nPω ψn

is a subformula of ϕ, we have:

[
ľ

nPω

ψn] =
ľ

nPω

[ψn].

Now by construction ϕ may contain only countably many subformu-
las, so we can construct a collection Q = (tXnu)nPω of all sequences
of formulas appearing in ψn; so by the Rasiowa-Sikorski lemma, there
is a Q-filter containing ϕ. By the same arguments as before, this gen-
erates then a valuation v : Propω1(ϕ) Ñ t0, 1u, which we can extend
arbitrarily to propositions not ocurring in ϕ, and this gives us the de-
sired model. ˝

The proof also yields:

Corollary 3.1.8. Lω1 is sound and complete with respect to CABA.

Proof. Soundness is obvious. As for completeness, given the algebra
F(ϕ) as above, let X1 be the set:

tx : x is a Q-filter u. (3.1)

The fact that each such filter preserves the collection Q means that
F(ϕ) embeds into P(X1) which preserves all meets and joins ocurring
in Q. By induction we can then show that this implies that P(X1)

refutes the formula ϕ, as desired. ˝

Hence the Rasiowa and Sikorski lemma allows us just enough prime-
ness in our filters to prove the same kind of completeness theorem. As
is well-known though, the Rasiowa and Sikorski lemma is intimately
related to Martin’s Axiom, so one could be reasonably skeptical about
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how this can be obtained for larger cardinals without invoking either
large cardinals or a forcing axiom. This brings us to the concept of
representability:

Definition 3.1.9. Let A be a κ-complete Boolean algebra. We say that
A is κ-representable if there is an algebra of sets B and a κ-surjective
homomorphism (i.e., preserving κ-infinitary operations) f : B Ñ A.

The key property of representability lies in the following, originally
showed by Chang [Cha57]:

Proposition 3.1.10. Let B be a κ-representable Boolean algebra. Then
whenever a P B, and Q = (tXαu)αăλ is a collection of λ ď κ sets of
elements which meet belongs to B, then there exists an ultrafilter of B
containing a and preserving the meets in Q.

Proof. See the Appendix. ˝

By the above proof, the generalisation of completeness now reveals
itself obvious, if we can find some logical property implying representabil-
ity. The following laws were found by C.C. Chang [Cha57] who cred-
its them in part to Tarski, and indeed do the job:

Definition 3.1.11. Let γ be an infinite cardinal number. We denote by
Πγ the γ-Chang law, for each family of formulas tAε : ε ă γu:

ł

µăγ

ľ

ηăγ

Aµ,η

where tAµ,η : µ, η ă γu is a family of formulas such that for each µ, η

there is some ε ă γ such that Aµ,η = Aε or Aµ,η = ␣Aε and for all
g P γγ there is a ε ă γ such that tAε,␣Aεu Ď tAµ,g(µ) : µ ă γu.

To see why this is needed, consider an arbitrary model. If the law
were false under this model, then for each µ ă γ, there would be
η ă γ such that ␣Aµ,η ; this defines a function g P γγ, and such
formulas now appear as

Ź

␣Aµ,g(µ); but by assumption, there is a
contradictory pair here, so this leads to the model satisfying a contra-
diction.

The following establishes the sanity of this condition (see Karp
[Kar64, Theorem 6.4.4]):

Proposition 3.1.12. A Boolean algebra B is κ-representable if and only
if it validates the κ-Chang’s law.

Using the former we can derive a completeness theorem for any
regular cardinal κ. Hence let Lκ+ denote the infinitary propositional
logic which includes, in addition to the usual rules and axioms, also
the κ-Chang law. Then:

Corollary 3.1.13. The logic Lκ+ is algebraic and relationally sound and
complete.

Proof. We provide algebraic completeness with respect to κ-complete
and κ-representable Boolean algebras. To prove relational complete-
ness, assume that & ϕ; then construct the free Boolean algebra gener-
ated by the at most κ-many infinite formulas occurring in ϕ, and oth-
erwise closed for Boolean operations, just as before. Note that since ϕ
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must contain at most κ formulas, this ensures that this Boolean alge-
bra will have size at most κ, and hence, that we can collect all infinite
meets (tXαuαăκ) ocurring in the algebra. Then proceed exactly as be-
fore, using κ-representability instead of the Rasiowa-Sikorski lemma.
˝

There is a deep connection between representability and distribu-
tivity. Indeed, in sufficient amounts, they each imply the other. One
particularly sharp relationship is the following:

Proposition 3.1.14. Let B be a Boolean algebra. Then if B is κ+-
complete Boolean algebra which is (κ, 2)-distributive. Then B is κ-
representable. In turn if B is (2κ)+-representable, then it is (κ, 2)-
distributive.

Proof. See for example [KMB89, Proposition 14.12]. ˝

The key problem of working with the distributivity law, rather
than Chang’s laws, is that the (κ, 2)-distributivity law, in order to be
included in a calculus, requires a conjunction of size κ+. This is why
in general, the distributivity laws do not suffice for obtaining com-
pleteness. This is also a hint for why very complicated distributivity-
like laws can come in handy.

One final “logic” one might consider, and which is relevant for
our discussion of geometric logic, is the system L8, consisting of a
proper class of propositional variables, axioms and together with all
the Chang distributivity laws (or equivalently all the distributivity
laws). Given what we showed before, it follows that:

Proposition 3.1.15. L8 is algebraically sound and complete with re-
spect to CABA’s.

With this preamble in mind, we are ready to take an upgrading
move to the setting of first-order logic.

3.2 Infinitary First-Order Classical Logic

When moving to first-order logic, we are suddenly faced with many
complications, and we will seek to avoid these as much as possible.
For a more in-depth coverage of this see [Mar02; Dic85; Kar64].

In this setting, our relational models are no longer simply valua-
tions, but rather entire classes of structures, and their semantics is the
expected one. One thing which we should note is that in this setting
we can have infinitely long terms and relational formulas. For sim-
plicity we will only tackle the case of Lκ+ ,κ where terms and such
formulas are of size less than κ (this is also Espı́ndola’s setting in his
papers).

In addition to this, we of course add quantifiers of the form:

Dαăλxα and @αăλxα.

The derivation system for this logic includes all instances of axioms
and rules for Lκ+ , introduction and elimination rules for existential
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and universal quantifiers. Additionally, we require a specific rule,
which allows us to cope with the loss of compactness with respect to
quantifiers. This rule is often called the rule of “Dependent choices”,
and it goes as follows: for each collection of formulas (ψα(vα)αăκ

If $
ľ

αăκ

Dv0ψ0(v0)^ ...^@ηăλvηDvλψλ(vλ) then $ Dαăκvαψ(vα).

Provided that the sequences of variables have disjoint range, and vari-
ables in vα do not appear free in ψβ for β ă α. The intuition behind
this rule lies in the set theoretic axiom: if we can pick some elements
to satisfy a formula, and from those elements pick some more ele-
ments to validate another formula, then we should be able to con-
struct a single sequence satisfying the whole sequence of formulas.
The contrapositive of the rule, however, will be more useful below:

If $ @xα

ł

αăκ

ψ(vα) then $
ł

αăκ

@v0ψ0(v0)_ ..._ Dηăλvη@vλψλ(vλ).

Let us now move on to the issue of completeness of these systems.
In the case of first-order logic what we have called “algebraic com-
pleteness” becomes somewhat of a misnomer; if one wanted a gen-
uinely “algebraic” proof this would be the domain of so-called “cylin-
dric algebras”. However, the theory of cylindric algebras is very dif-
ferent from the usual Boolean, Intuitionistic, and even Modal, logical
setting, as it is vastly more complex and filled with subtleties. The ap-
proach taken here thus focuses more on the Henkin-Tarski relational
completeness.

As such, the natural option is to assemble a “term model”, and use
this to serve as our generic model for a given theory. But this reveals
us the need for set-theoretic assumptions. To see why, note that the
way this is done for the logic Lκ+ ,κ, is as follows: given a formula
ϕ, let X be a collection of κ+ many symbols not ocurring in ϕ, and let
T0(ϕ) be the collection of all symbols in X and all constants appearing
in ϕ. Let ∆0 be the collection of all substitutions of all subformulas of
ϕ for terms in T0. Note that ϕ can have at most κ many subformulas;
each subformula must have fewer than κ free variables, say δ, and the
set of terms in this language is of size κ+ (given it includes the whole
of X), hence there are (κ+)ăκ many possible substitutions. Since by
assumption, κăκ = κ+, then the above is surely also κ+. Then we
construct, by mutual induction the sets:

• Tγ(ϕ), consisting of all terms in atomic formulas of
Ť

ξăγ ∆ξ .

• ∆γ, consisting of all substitutions of subformulas of A for terms in
Ť

ηăγ Tη .

We then construct T(ϕ) as the union of these sets over κ, and let ∆
be the union over ∆γ together with the set t f = g : f , g P T(ϕ)u.
Note that the set-theoretic assumption gives us that all of these sets
remain firmly of cardinality at most κ, and all formulas involved con-
tain fewer than κ many variables.
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The former is then why the assumption:

κăκ = κ

Appears naturally in the setting of first-order logic. With it, using
Karp’s result, one can prove the following:

Theorem 3.2.1. Assume that κăκ = κ. Then the calculus Lκ+ ,κ is rela-
tionally sound and complete.

Proof. See Appendix. ˝

Additionally, we remark a few facts about this kind of complete-
ness result:

• If we were looking instead at Lκ+ ,ω, the hypothesis that κăκ = κ is
not necessary;

• If κ is strongly inaccessible, one can then show that Lκ,κ is sound
and complete;

• However, we mention that, for example, Lω2,ω2 was shown to be
incomplete [Kar64, Chapter 12], and like it all logics of the form
Lκ,κ when κ is a successor.

• The logic L8,κ is sound and complete, without any extra assump-
tions, by picking a sufficiently large first coordinate, and by using
similar arguments as those sketched here.

We stress then that apart from the need for cardinal assumptions
for some cases, and the rule of dependent choices, this setting still
very much seems quite tamable. In the next section we will see how
this changes when we move the setting to intuitionistic logic.

Thus far, the systems we have looked at have remained wholly
classical. We will move to a different set of logics, and thus we need
to adopt a few changes:

• We lose interdefinability of the connectives, so we are forced to
work with all connectives. Additionally, for the majority of cases
we do not use the implication. This is important, since the intuitionis-
tic implication, unlike all other connectives, has a highly modal
flavour, and hence, tends to require a strong form of prime fil-
ter separation to be validated (we will later see how this can be
dropped in the special case of completeness we will be interested
in).

• Our relational models – even in the propositional case – have to be
more complex than in the classical case.

• Heyting algebras are less symmetric structures, which means we
lose the ability to use structures like ideals with ease.

Additionally, as we will see, to make the results go through we of-
ten need to restrict to fragments containing different sizes of conjunc-
tion and disjunction, and even allowing arbitrarily large disjunctions.
This introduces further degrees of freedom which we will encounter
in the next few pages.
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Definition 3.2.2. The language of propositional κ-coherent logic, de-
noted Lcoh

κ is composed of proposition symbols, as well as conjunc-
tions and disjunctions of size less than κ. The language of proposi-
tional κ-geometric logic, denoted Lg

κ is composed of arbitrary disjunc-
tions and conunctions of size less than κ.

3.3 Algebraic and Relational Models

The algebraic models we will be mostly concerned with are Distribu-
tive Lattices and Heyting algebras. For general references see for in-
stance [CZ97; Dav79; Esa19]. In the finitary case, ω-coherent logic is
sometimes called positive logic, due to the lack of any form of negation
(whether classical or otherwise) present in the language. The usual
proof of algebraic completeness is routine, using the same technique
of generating the free algebra. As for the relational completeness, we
consider Kripke semantics1: 1 Note that we use here the more usual

semantics for positive and intuitionistic
logic – including all posets, rather than
just trees. This difference is immate-
rial for most purposes, and we think it
helps connect the infinitary cases with
the more usual duality-laden finitary
cases.

Definition 3.3.1. (Propositional Kripke semantics) A positive Kripke
frame consists of a tuple F = (K,ď) where ď is a partial order. A
propositional Kripke model consists of a pair M = (F, V) where F is a
Kripke frame and V is a function V : Prop Ñ Up(K). We call a pair
(M, w) of a Kripke model and a world w P K a Pointed Kripke model.
We define a forcing relation on this structure, ,, as follows:

• M, w . K.

• M, w , p if and only if w P V(p);

• M, w ,
Ź

iPI ϕi if and only if M, w , ϕi for each i;

• M, w ,
Ž

iPI ϕi if and only if M, w , ϕi for some i.

We define propositional intuitionistic models by extending the clause
for implication as:

• M, w , ϕ Ñ ψ if and only if whenever w ď v and M, v , ϕ then
M, v , ψ.

Definition 3.3.2. (First-order Kripke semantics) A first-order Kripke
model is a quadruple B = (K,ď, D, V) where (K,ď) is a Kripke frame
frame, D is a functor from K to Set, and V is a valuation on each
of the models, over a fixed collection of relation and function sym-
bols, and with added constants from

Ť

kPK Dk, which is required to be
persistent, i.e., the following diagram should commute for each n-ary
function symbol and each relation symbol, as described in Figure 3.1:

Dn
k Dk

Dn
m Dm

gDk

D(kďm)

gDm

Figure 3.1: Persistence of Mod-
els

For each model (D(k), V) we define the (-semantic satisfaction rela-
tion as usual. We define the positive satisfaction relation on B, ,, as
follows:
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• For ϕ(x) a closed atomic formula with constants in the language,
and k P K, M, k , ϕ(x) if and only if D(k) ( ϕ(x).

• The propositional clauses of satisfaction as before;

• M, k , Dλăαxαϕ(xαăλ, y) if and only if M, k , ϕ(cαăλ, y) for some
sequence of elements in D(k).

We further consider intuitionistic Kripke models by adding the clause
for the universal:

• M, k , @αăλxαϕ(xαăλ, y) if and only if if k ď t then for all (cα)αăλ

in D(t), M, t , ϕ(cα, y).

In both the propositional and first-order cases, the intuition be-
hind the persistence condition is as follows: whereas classical logic
imagines truth as being modelled absolutely, positive and intuitionis-
tic logic understand knowledge as something which can be acquired
as more facts are discovered, i.e., as one progresses along a Kripke
model. It is a well-known fact in the theory of intuitionistic and posi-
tive logic that nothing is lost when considering complete partial orders;
in that case, we can consider the leaf-nodes of the model as eventual
classical models, which always exist above any non-classical model.

Like before, we will begin by analysing the propositional case, and
then return to the first-order case once the propositional complexities
have been tamed.

The completeness of basic positive logic follows a very similar strat-
egy as the classical case before it. For the relational completeness,
we note that the ultrafilter lemma admits an extension to a prime fil-
ter lemma, saying that whenever F is a filter and I an ideal such that
FX I = H, then there is a prime filter F1 Ě F such that F1X I = H. We
have the following analogue of a Stone space that makes the situation
very close:

Definition 3.3.3. Let (X,ď, τ) be a partially ordered topological space.
We say that this is a Priestley space if:

1. (X, τ) is a compact topological space;

2. (Priestley separation condition) Whenever x ę y there is a clopen
upwards closed subset U Ď X such that x P U and y R U;

The following is shown for instance in [DP02].

Proposition 3.3.4. The category of distributive lattices is dually equiv-
alent to the category of Priestley spaces. In particular, each distribu-
tive lattice H is isomorphic to a distributive lattice of sets of the form
ClopUp(XH) where XH is its dual Priestley space.

Proposition 3.3.5. Propositional logic Lint
ω is algebraically and rela-

tionally complete.

Proof. The proof is identical to the classical case, except we now use
the prime filter theorem in the form specified above. ˝
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Many notions defined before generalise with obvious modifica-
tions – for instance the (κ, µ)-distributive laws, or the notion of κ-
representability, given these only involve the lattice language. One
aspect which has a less obvious generalisation is atomicity. Indeed,
whilst the concept of “atomic distributive lattice” is certainly sensi-
ble, complete and atomic Distributive lattices do not play the same
role as their Boolean counterparts. The relevant notion is the follow-
ing:

Definition 3.3.6. Let H be a distributive lattice. We say that a filter F
on H is completely join-prime if

Ž

iPI ai P F if and only if there is some
i P I and ai P F. We say that an element a P H is completely prime if
Òa is a completely join-prime element.

We say that an element a P H is completely meet-prime if whenever
Ź

iPI bi ď a then for some i P I, bi ď a. We say that a pair of el-
ements (p, q) where p is completely join-prime and q is completely
meet-prime is a splitting pair if ÒpX Óq = H and ÒpY Óq = H.

We say that H is completely join-prime generated if every element is
the join of completely prime elements.

We note the following well-known characterization:

Proposition 3.3.7. Let H be a complete distributive lattice. Then the
following are equivalent:

1. H is completely join-prime generated.

2. H is isomorphic to Up(X), the set of upwards closed subsets of a
partially ordered set (X,ď).

3. For each a, b P H, if a ę b, there is a splitting pair (p, q) such that
p ď a and b ď q.

Proof. (1) implies (2). If H is completely join-prime generated, con-
sider P8 the set of completely join prime elements, ordered by inclu-
sion. Let Up(P8) denote the upwards closed subsets of P8. Define:

ϕ : H Ñ Up(P8)

a ÞÑ tx : x ď au

The hypothesis of complete generation ensures that this is a complete
embedding. It is easy to see that it is onto since the algebras are both
complete.

(2) implies (3): assume that U and V are upwards closed subsets
and U Ę V; then there is some x P U such that x R V. Note that Òx
is an element of the lattice, and it is completely join prime. Similarly,
X ´ Óx is a completely meet prime element, and V Ď X ´ Óx (since
V is upwards closed). So (Òx, X ´ Óx) is a splitting pair: if Òx Ď U Ď

X´ Óx we surely get a contradiction, and given any W, either x P W,
in which case, Òx Ď W, or x R W, hence W Ď X´ Óx (given otherwise
x P W by upwards closure). This gives us the desired splitting pair.

(3) implies (1): Given an arbitrary element a P H, we claim that it
is the join of all the completely join-prime elements below it. Indeed,
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assume not; then a ę
Ž

cďa c, where the latter is the join of all com-
pletely join primes. Then by assumption, let (p, q) be a splitting pair.
It is easy to see that p is a completely join-prime element; but then
Ž

cďa c is contained in ÒpX Óq, a contradiction. ˝

Hence, the algebras of the form Up(X) are, in the setting of positive
logic, the correct generalisation of the power set algebras. For ease of
reference, and in light of the result, we refer to the above as Split-
ting Algebras. One can note that the above completeness theorem also
showed completeness with respect to these kinds of algebras, and in
general, we will want this from our completeness theorems in anal-
ogy with the classical case. On the other hand, we can see that we
cannot obtain this through the usual distributive laws, since complete
distributivity is not enough to guarantee one is a splitting Heyting al-
gebra:

Example 3.3.8. Consider [0, 1] with complete meet given by infimum
and complete join given by supremum. Notice that it is completely
distributive: if (xi,j)iPI,jPJ is a collection of elements, then note that if
z is equal to

Ž

t
Ź

iPI xi, f (i) : f P J Iu, then z is the supremum element
amongst the f , of the infima of xi, f (i). Let i be arbitrary. Then note
that for each f such that j is in the range of f ,

Ź

iPI xi, f (i) ď xi,j; hence
the supremum of the former is less than or equal to

Ž

jPJ xi,j, since
all j will be in the range of some function. Hence z ď

Ž

jPJ xi,j. This
suffices to show complete distributivity.

To see that this algebra is not splitting, note that it contains no com-
pletely join prime elements other than 0; indeed, given any element,
we can consider it as the supremum of the elements coming below it.

Indeed, in this setting, complete distributivity is rather equiva-
lent to complete representability. This follows by a result due to Raney
[Ran52]:

Lemma 3.3.9. Let H be a complete distributive lattice. Then the fol-
lowing are equivalent:

1. H is a complete homomorphic image of a completely join-prime
generated algebra H1;

2. H is completely distributive.

Proof. See Appendix. ˝

Hence in this respect the situation is distinct from the classical case.
κ-distributive laws cannot ensure us completeness with respect to al-
gebras of sets, given if that were the case, the above counterexample
would not exist.

The notion of a Q-set adapts to our setting, with minimal changes:

Definition 3.3.10. Let H be a κ+-complete distributive lattice, and
Q = (tXαu, tYαu)αăκ be subsets of size at most κ, such that

Ź

Xα and
Ž

Yα exist for each α. We say that a subset F Ď H is a Q-filter if it is a
prime filter and additionally:
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• Xα Ď F if and only if
Ź

Xα P F;

•
Ž

Yα P F if and only if Yα X F ‰ H.

However, again there is a priori no device that ensures that enough
Q-filters exist. What we would need is some rule or law that ensured
the existence of enough such points. It is here that we encounter Es-
pindola’s “Transfinite Transitivity Rule”.

3.4 Propositional Transfinite Transitivity Rule

We have so far seen a number of distributivity properties that a given
lattice might enjoy. The last section gave us a taste for the difficulties
of dealing with this setting. In this section we discuss C. Espindola’s
Transfinite Transitivity rule, as a device enforcing strong distributiv-
ity.

Definition 3.4.1. Let H be a distributive lattice. We say that H is TTκ-
distributive (or satisfies the Propositional TTκ rule) if it is κ-complete,
possibly with a collection of κ-many κ-joins, if for each γ ă κ+ and all
elements ta f : f P γăκu such that:

a f =
ł

gPγβ+1,gæβ= f

ag

for all f P γβ, β ă κ and:

a f =
ľ

αăβ

a f æα

for all limit β, we have that
Ž

f PB
Ź

βăδ f
a f exists and is equal to aH

where B is the set of minimal elements of a bar in γăκ .
We denote the TTκ-rule as follows:

ϕ f $
Ž

gPγβ+1,gæβ= f ϕg, β ă κ, f P γβ

ϕ f %$
Ź

αăβ ϕ f æα
, β ă κ, limit β, f P γβ

ϕH $
Ž

f PB
Ź

βăδ f
ϕ f æβ

where γ ď κ, B Ď γăκ is a collection of the minimal elements of a
given bar, and the δ f ă κ are the levels of f P B, and all meets and
joins are assumed to exist.

We say that a complete distributive lattice H satisfies the Complete
Propositional TT rule if it is TTκ-distributive for all κ.

We note some aspects of the former rule: first of all, note that it
involves only conjunctions of size less than κ, and disjunctions of size
at most κ. Moreover, the conclusion seems somewhat similar to the
conclusion of the (κ, κ)-distributivity law, if only visually.

In his papers, C. Espindola’s motivates the the former rule as some-
thing one ought to have if completeness is to be possible, by taking the
situation where we have been able to establish (somehow) a represen-
tation using cleverly chosen points, and demonstrating how this rule
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needs to be satisfied. Another demonstration of this sort (proven by
him in a MathOverflow question) shows that the TT-rule is enough
to ensure a strong form of representability; we reproduce here the ar-
gument as this helps to illustrate the uses of the rule:

Proposition 3.4.2. Let H be a complete distributive lattice. Then the
following are equivalent:

1. H is a Splitting algebra;

2. H satisfies the Complete Propositional TT-rule.

Proof. First assume that H does not satisfy the complete Propositional
TT-rule; then there is a tree of elements in the conditions of the an-
tecedent, and a root ϕH which is not below

Ž

f PB
Ź

βăδ f
ϕ f æβ

for any
bar B. Pick an arbitrary bar, and use the splitting property to find a
completely join prime element x ď ϕH which is not below the given
join; then using the complete join-primeness and the construction of
the tree, we can construct a branch, ensuring that indeed x is eventu-
ally below

Ź

βăδ f
ϕ f æβ

, a contradiction.

Conversely, assume that the TT-rule is valid. Let κ = (2δ)+ where
|H| = δ; for each a P H, let C(a) denote the collection of all sequences
(bα)αăλ for λ ď κ where a =

Ž

αăλ bα. Now let f : κ ˆ κ Ñ κ be the
canonical well-ordering of κ, with the property that f (α, γ) ě γ.

Now let c be an arbitrary element. We will construct a tree of height
κ. Let ϕH = c. For each β, assume that the tree has been defined
on level β, and we specify it at level β + 1, by considering a node p
at level β, such that we will outline how to construct its successors.
Indeed, if f (α, γ) = β, note that the predecessors at level γ will have
been defined for p; so take the α-th tuple (bηăλ) P C(m) where m is
the (unique) predecessor of p in the level γ, and note that then:

p ď p^m = p^
ł

ηăλ

bη =
ł

ηăλ

p^ bη

Hence, we let the successors at level β + 1 be exactly p^ bη . At limit
levels we take the conjunction of all predecessors.

Note that since κ ą δ, and the nodes along a branch are decreasing,
for each branch there is some β where the tree eventually stabilises.
Hence if p is such a node where all of its successors are equal to it, then
p must be completely join-prime: if p =

Ž

iPI ci, then (ci)iPI P C(p),
so at a sufficiently large cardinal this will ocurr in the branch.

Now pick a bar B consisting of the nodes where the branch sta-
bilises. By the TT-rule, we have that c ď

Ž

f PB
Ź

βăδ f
ϕ f æβ

. Each
of these elements is below c, so this is equality, and by what we just
showed they are completely join-prime, so c is the join of completely
join-prime elements. By Proposition 3.3.7, then H is a Splitting alge-
bra. ˝

The proof technique employed in the previous proposition illus-
trates the essence of the TT-rule: like all distributivity laws, its goal
is to eliminate specific combinatorial structures living in our lattices,
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and the specific point here is to control the structure of trees of ele-
ments to ensure that the characteristic behaviour of distributivity –
forcing a given top node to be below a join – is preserved at limit
steps.

The key use of the TT-rule for our purposes lies in the following
proposition, which uses the same ideas as above, and is proven in
[Esp18]:

Proposition 3.4.3. Assume that κăκ . Let H be a distributive lattice
such that:

• H has cardinality at most κ;

• H is closed under meets of less than κ many elements, and joins of
at most κ many elements;

• H satisfies the Propositional TTκ rule.

• H contains a collection Q of at most κ many joins of at most κ many
elements, closed under the following distributivity requirement: if
(bα)αăλ is such that

Ž

αăλ bα and x P H then
Ž

αăλ x^ bα P Q.

Then whenever a ę b, there is a Q-filter F which is κ-complete and
κ-prime such that a P F and b R F.

Proof. Consider again the canonical well-ordering f : κ ˆ κ Ñ κ, and
for each c P H let C(c) be the collection of tuples (dαăλ) such that
either λ ă κ, or if λ = κ, then

Ž

dα P Q, and the join is equal to
c in both cases. Define the tree in a similar way to above, using the
new sets C(c), and letting ϕH = c. By the TT-rule, we have that c
is below the join of the elements at a given fixed (but arbitrary) bar.
Now assume towards a contradiction that along each branch of this
tree, we eventually arrived at some e ď b; hence for each such branch
we could take the least element e in these conditions, and this would
form a bar on the tree. Then we would have that a ď

Ž

ePB e ď b,
a contradiction. So there must exist a branch of elements e such that
e ę b for all the elements in that branch.

Now define F by letting c P F if and only if for some x P B, x ď c.
Then note that F will be closed under meets of size smaller than κ,
since the branch is of size κ; a P F, and b R F; and if

Ž

αăλ bα P F, then
for some x in the branch we have that x =

Ž

αăλ x ^ bα; hence each
successor of x will be of the form x^ bα, and hence, bα P F for some
α. This shows that F is a Q-filter as desired. ˝

The former now allows us to prove the completeness theorem for
propositional κ-coherent logic, under the assumption that we only
include conjunctions of size at most κ.

Definition 3.4.4. Let Lcoh´

κ+
be κ+-coherent logic with the TTκ-rule,

and with conjunctions limited to size less than κ.

Proposition 3.4.5. The logic Lcoh´

κ+
is algebraic and relationally com-

plete.
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A consequence of the previous result is that κ-geometric logic is
sound and complete, both algebraic and relationally. We delay the
proof to include the first-order case.

One aspect which we might note now is that the above would not
be (necessarily) enough if we also wanted to represent an implication
connective. This is because to model the latter using Kripke seman-
tics, one needs to represent it somewhat as:

ϕ(a Ñ b) = X´ Ó(ϕ(a)´ ϕ(b)),

and to prove such an equality, we at some point must assume that
if x R ϕ(a Ñ b), then there is some extension of x which contains
a and does not contain b. In the finitary case this is ensured by the
strong form of the prime filter lemma we mentioned above, and in the
countably infinitary case, by the Rasiowa-Sikorski lemma on Heyting
algebras (see for instance [Gol12]). Moreover, for weakly compact car-
dinals κ, C. Espindola has a proof that the strong prime filter lemma
generalises in the relevant way. However, this does not seem neces-
sary, as we will not need this to prove completeness with respect to
intuitionistic logic.

We conclude by noting the first-order version of this rule:

Definition 3.4.6. The (full) TTκ rule is the following rule:

ϕ f $y f

Ž

gPγβ+1,gæβ= f Dxgϕg, β ă κ, f P γβ

ϕ f %$y f

Ź

αăβ ϕ f æα
, β ă κ, limit β, f P γβ

ϕH $yH

Ž

f PB Dβăδ f x f æβ+1

Ź

βăδ f
ϕ f æβ

where γ ď κ, where y f is the context of ϕ f , assuming that for each
f P γβ, FV(ϕ f ) = FV(ϕ f æβ

) Y x f , where x f X FV(ϕ f æβ
) = H, and

FV(ϕ f ) =
Ť

αăβ FV(ϕ f æα
) for limit β; where B Ď γăκ is a collection

of the minimal elements of a given bar, and the δ f ă κ are the levels of
f P B, and all meets and joins are assumed to exist, and additionally

As noted by C.Espindola, in the classical case, the former allow us
to derive both the (κ, κ)-distributivity rules, and also the axiom of κ-
dependent choices. Hence, this consists of the appropriate first-order
generalisation of Karp’s system. Hence, let us see this in action:

3.5 First-order Infinitary Coherent Logic

We return to the first-order case. Once again the idea for proving the
soundness and completeness is to use a term model construction.

Definition 3.5.1. We denote the first-order κ-coherent logic with re-
stricted conjunction, Lcoh´

κ+ ,κ , the logic containing κ-disjunctions (pro-
vided the resulting set has less than κ many free variables), conjunc-
tions of size less than κ, and existential quantification of formulas
with existentials of size less than κ. We include in this logic the ba-
sic axioms and the full TTκ-rule.

The key ideas here are the following:
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• As before, we construct for each formula an associated collection
of terms Tγ(ϕ) and a set of formulas ∆(ϕ) containing all relevant
substitution instances from a pool X of fresh variables.

• We assume that ϕ & ψ, and construct a term algebra containing
at most the κ-large joins of ϕ and ψ, including all substitution in-
stances of the formulas obtained for variables, as before; the as-
sumption that κăκ = κ ensures this can be done in such a way that
the resulting algebra has size at most κ. Given a formula of the
form Dxϕ(x) we add also the join

Ž

ϕ(y) ranging over all formulas
(where again κăκ = κ and the assumption on size of the formulas
ensures this is well-defined). We take the quotient over derivability
as usual.

• To obtain a condition for consistency, we require something anal-
ogous to Lemma 3.9.1 (see Appendix), where the requirement of
maximality (i.e., ϕ P Γ if and only if ␣ϕ R Γ), given the absence of
negations.

Indeed, the last step provides us a criterion for satisfiability, which
allows the construction of a term model.

Hence, suppose that ϕ &x ψ. All that is needed is to extract a
prime theory from the Lindenbaum-Tarski algebra. One fact which is
necessary is that the resulting algebra is indeed TTκ-distributive.

Lemma 3.5.2. The algebra H as constructed above is TTκ-distributive.

Proof. Assume that ta f : f P γăκu is a tree as defined. For each such
formula, we can assume that a f = ϕ f ; by hypothesis, ag = Dxθg(x)
for each ag such that a f =

Ž

g ag. Hence, without loss of generality,
we can consider ϕ f =

Ž

gPγβ+1,gæβ= f Dxθg(x), for each such f . In this
way we construct a tree for which we can apply the TTκ-rule.

Now notice that by the above rule, ψH implies
Ž

f PB Dβăδ f x f æβ+1

Ź

βăδ f
ϕ f æβ

in the context yH. Additionally we have that:

Dβăδ f x f æβ+1

ľ

βăδ f

ψ f æβ
$ ϕH

where the consequence is taken in the shared context; the latter fact
follows from the fact that we are given all the witnesses outside of the
conjunction, ensuring there are no clashes of variables, and indeed,
the witnesses are as desired.

Hence by construction of the algebra this ensures that aH is the
desired join of elements. ˝

Definition 3.5.3. Let H be an algebra of formulas as constructed in all
the previous sections. If F is a prime filter over H, let:

ΓF = tϕ : [ϕ] P Fu.

We call such a collection of formulas a (κ-)prime theory.

With the previous lemma in mind we can now prove:
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Proposition 3.5.4. The logic Lcoh´

κ+ ,κ is algebraic and relationally com-
plete.

Proof. Soundness is trivial. Now assume that ϕ & ψ in a specific con-
text. Consider the algebra H as above. It is of size κ, has a collection
of at most κ joins of size κ, is κ-complete, and TTκ-distributive by
Lemma 3.5.2. Hence, by Proposition 3.4.3, find a Q-filter P containing
ϕ and not containing ψ. Then the term model T(ϕ), modulo the the-
ory ΓP, is the model we want (see the Appendix for the arguments for
the classical case, the same facts apply here). ˝

Hence, the first-order case offers no difficulties when we are only
concerned with coherent theories. It is then clear that:

Corollary 3.5.5. First order κ-geometric logic is sound and complete.

However, you will have noted that at no point did we talk about
Kripke models. In the next section we will show where these become
relevant by extending the previous results to the full first-order set-
ting.

3.6 First-Order Infinitary Intuitionistic Logic

Despite the problems we outlined in Section 3.4, it is possible to ex-
tend the results to deal with the implication and the universal quan-
tifier. The key to handle this is the following technical lemma:

Lemma 3.6.1. Let ϕ be a formula in first-order κ-intuitionistic logic.
Assume that H is the Lindenbaum-Tarski algebra of size at most κ

constructed in the same way as described in the previous section.
Suppose that F is a Q-filter over H. If [a Ñ b] R F, then there is a Q-
filter F1 Ě F such that [a] P F1 and [b] R F1. Similarly, if [@xϕ(x)] R F,
there is a Q-filter F1 Ě F such that for some collection of variables
ϕ(y) R F.

Proof. Let ΓF be the prime theory corresponding to F. Let T be the
term algebra, such that H is a quotient of T. Let H1 be the Lindenbaum-
Tarski algebra modulo ΓF, i.e., we take the quotient under derivabil-
ity, adding the formulas in ΓF as axioms. Note that then H1 will be
again an algebra of size at most κ, κ-complete, TTκ-distributive (by
the same argument as in Lemma 3.5.2). Note that if [a]Ñ [b] R F, then
a Ñ b R ΓF, and so [a]F ę [b]F, where these represent the equivalence
classes in this algebra. Hence by Lemma 3.4.3, there is a Q-prime fil-
ter containing [a]F and not containing [b]F, say G. Now define the
following:

F1 := Òt[ψ] P H : [ψ]F P H1u.

We will show that this is a Q-filter:

• Closure under ă κ-meets is straightforward to verify; now assume
that [ψ] ď

Ž

αăκ [µα]; hence ψ $
Ž

αăκ µα, so in H1, [µα]F P G for
some α. Hence [µα] P F1 as desired.
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• [a] P F1 and [b] R F1; to see the latter, assume that [ψ] ď [b] where
[ψ]F P G; the former implies that ψ $ b, which would then force
that [b]F P G.

• F Ď F1: if [ϕ] P F, then by construction [ϕ]F = [J]F, so [ϕ]F P G,
and hence [ϕ] P F1.

Thus, F1 is indeed the desired theory. The case where [@xϕ(x)] R F is
wholly similar. Consider again the quotient algebra under the theory
ΓF. Since [@xϕ(x)]F ‰ [1]F, and this is the meet of all the formulas
ϕ(y) for y not free in ϕ, we have that there must be some y for which
[ϕ(y)]F ‰ [1]. Then proceed as above, obtaining a filter F1 Ě F such
that [ϕ(y)] R F1. ˝

Definition 3.6.2. Let Lint´

κ+ ,κ denote the first-order intuitionistic logic
where conjunctions are of size ăκ.

Corollary 3.6.3. The logic Lint´

κ+ ,κ is sound and complete with respect to
Kripke models.

Proof. Soundness is easy. To see completeness, again assume that ϕ &

ψ. Construct the Lindenbaum-Tarski algebra H as before, which is a
Heyting algebra saturated with witnesses. Let

Pr(H) = tΓF : F is a Q-filter over Hu

be the collection of prime theories over this language, ordered by in-
clusion. Note that since ϕ & ψ, then there is a theory T0 containing
ϕ and not containing ψ, which we take as our root. Now, for each T1

such that T0 Ď T1, let T1 be the term model containing the witnesses
from T1, and quotiented under T1. Let Term denote the collection of
all such models. Note that these are all first-order models, which ad-
ditionally satisfy persistence, given the theories are ordered by inclu-
sion. This forms a Kripke model M, and we claim that for all T PM:

T , ϕ ðñ ϕ P T

This is straightforward for the “local” clauses, since the theories are
obtained from Q-filters, and hence are closed under disjunctions and
conjunctions of appropriate size, and under existential quantifiers. As
for the implications and universal quantifiers, we use Lemma 3.6.1,
together with the induction hypothesis, to ensure the result. ˝

3.7 Set-Theoretic and Algebraic Rasiowa-Sikorskis

We include here, since I could not find the proof anywhere, a brief
discussion on how the version of Rasiowa-Sikorski that we are using
(which can be called the “Algebraic” Rasiowa-Sikorski) relates to the
more usual version in set theory.

Definition 3.7.1. The “Set-Theoretic Rasiowa-Sikorski Lemma” refers
to the following statement:
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• For every poset P, and every countable family D = tDn : n P ωu

of dense subsets of P, there is a D-generic filter F, i.e., for every n,
FXDn ‰ H.

Lemma 3.7.2. The Algebraic form of Rasiowa-Sikorski follows from
the Set-Theoretic one.

Proof. Let B be a Boolean algebra, and consider Q = (tXnu) a collec-
tion of subsets which have an infinite join in the algebra. Then for
each n look at:

Dn = t
ľ

Xnu Y t␣am : am P Xn, m P ωu

Indeed, we can show that this is a dense subset, since if x is arbitrary,
and x ^

Ź

Xn = 0, then x ď
Ž

nPω ␣an, so x =
Ž

nPω x ^ ␣an, so
there must be some m such that x ^ ␣am ‰ H. Hence let G be a
generic filter, intersecting all these filters and containing p, and let U
be an ultrafilter extending G. Then U is a Q-filter, as desired. ˝

3.8 Proof that κ-representability implies completeness

The following is our topological adaptation of Chang’s proof that κ-
representability implies the existence of a Q-filter (the original proof
was formulated in a purely algebraic fashion):

Proposition 3.8.1. Let κ be a regular cardinal. Then A is a κ-representable
Boolean algebra if and only if in the dual space X, every intersection
of less than κ many dense open subsets, each a union of less than κ

many clopen sets, is non-empty.

Proof. Consider X the dual Stone space of A, and identify A with
Clop(X). Let g : B Ñ A be a surjective κ-complete epimorphism
from B ď P(X) onto A, the former of which is a κ-algebra of sets.
Let h : A Ñ B be a map defined as follows: pick an ultrafilter U
containing a, and whenever c P U, let h(c) be some element such
that g(h(c)) = c and when c R U, let h(c) = ␣h(␣c). Assume that
(ϕ(ai,j))i,j is a collection of clopen sets such that for each i,

Ť

jPJ ϕ(ai,j)

is dense. Assume that for some c in A

ϕ(c) Ď
ď

iPI

č

jPJ

ϕ(␣ai,j).

Then in particular c Ď
Ž

iPI ϕ(ai, f (i)) for each f P J I .
Note that

Ź

jPJ ␣ϕ(ai,j) = int(
Ş

jPJ ␣ϕ(ai,j)) = H. Then note that:

ď

iPI

č

jPJ

␣h(ai,j) ‰ 0B

Otherwise, we would have that:

g
(ď

iPI

č

jPJ

␣h(ai,j)) =
ł

iPI

ľ

jPJ

␣ϕ(ai,j) = H

˝
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Proposition 3.8.2. Let B be a κ+-complete and κ-representable Boolean
algebra for regular κ. Then whenever a P B, and Q = (tXαu)αăλ is
a collection of λ ď κ sets of elements which meet belongs to B, then
there exists an ultrafilter of B containing a and preserving the meets
in Q.

Proof. Consider X the dual Stone space of A, and identify A with
Clop(X). Let g : B Ñ A be a surjective κ-complete epimorphism from
B ď P(X) onto A, the former of which is a κ-algebra of sets. Since
a ‰ 0, let U be an ultrafilter containing a. Let h : B Ñ A be a function
defined as follows: if c P U, then h(c) is an arbitrary element of B such
that g(h(c)), and if c R U, then h(c) = ␣h(c). Consider the family H
of subsets of A as follows:

• tau;

• ␣
Ź

Xα Y
Ť

βăκ xβ for each α in the Q-set.

• t␣c0, ...,␣cn, c0^ ...^ cnu for each finite subset of elements from A.

Note that except for the first case, then whenever D is such a set,
Ź

D = int(
Ş

D) is empty.
For each D P H, let hD = th(b) : b P Du Ď B. Then note that:

ď

t
č

hD : D P Hu ‰ 1B

for otherwise, because g is sectioned by h and preserves κ-complete
meets and joins:

g
(ď

t
č

hD : D P Hu
)
= g(

ď

t
č

th(b) : b P Du : D P Hu

=
ł

t
ľ

tg(h(b)) : b P Du : D P Hu

=
ł

t
ľ

D : D P Hu

= t␣ϕ(a)u.

Since by assumption a ‰ 0, then ␣a ‰ 1, so this is a contradiction.
Now, for each choice function on H, f , let cD, f (D) denote f (D). Hence
using distributivity over B we have:

ď

t
č

DPH
cD, f (D) : D P Hu ‰ H.

So let T P B be an element that belongs here. Thus for each α, either
T Ď ϕ(␣

Ź

Xα)) or T Ď ϕ(xβ) for some xβ P Xα. For each α denote
the relevant element by dα Hence consider:

S = tau Y tdα : α ă κu.

Note that this forms a filter basis: if a, d0, ..., dn are arbitrary elements,
then T Ď h(dk) for each k, hence look at the set Dl = th(␣a), h(␣d0), ..., h(␣dn), h(a^
d0 ^ ...^ dn)u; if T Ď h(␣dk), then because h preserves complements,
T Ď ␣h(dk), so T = H, a contradiction. Hence the only option is that
T Ď h(a ^ d0 ^ ...^ dn), i.e. a ^ d0 ^ ...^ dn P S; so extend S to an
ultrafilter F. Then F is the desired Q-filter. ˝
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3.9 Proof of completeness of First-order Infinitary Calculus

The following is due to Carol Karp [Kar64]. We begin by proving the
following lemma, which gives us a criterion for satisfiability:

Lemma 3.9.1. Assume that ϕ is an arbitrary formula, and suppose
that T(ϕ) and ∆ are as previously outlined. Then ϕ is satisfiable if
there is a set of formulas Γ containing ϕ and all formulas of the form
g = g for g P T(ϕ), and satisfying the following conditions:

• If terms g(tα)αăδ and g(t1
α)αăδ are in T(ϕ) then if tα = t1

α P Γ for all
α ă δ then g(tα)αăδ = g(t1

α)αăδ P Γ.

• If R(tα)αăδ and R(t1
α)αăδ are in ∆ then if tα = t1

α P Γ for all α ă δ

and R(tα)αăδ P Γ, then R(t1
α)αăδ P Γ.

• If ψ P ∆ then ψ P Γ if and only if ␣ψ R Γ.

• If
Ź

ηăκ ψη P ∆, then
Ź

ηăκ ψη P Γ iff all the ψη P Γ.

• If DiPIviψ(vi) P ∆, then DiPIviψ(vi) P Γ if and only if there is a
substitution: ψ(ti) P Γ for ti a collection of I many terms from T.

Proof. This proceeds as in the finitary case: let T(ϕ) be the set of
terms, and form the term model by taking the set of equivalence
classes modulo Γ. The above conditions ensure that this forms a well-
defined equivalence relation, and that interpreting function symbols
by letting them name themselves is well-defined. We define relation
symbols in the usual way: R([tα])αăδ if and only if there are t1

α P [tα]

such that R(tα)αăδ P Γ. Call this model T. Then the remaining clauses
ensure that for each formula ψ P ∆:

T ( ψ ðñ ψ P Γ.

This is done by induction on complexity of formulas. For equality
this is by definition; for relation symbols this is given, and all clauses
except the existential follow immediately. Finally we look at the ex-
istential case. Assume that ψ = DiPIviχ(vi). Indeed first suppose
that ψ P Γ. Then by the hypothesis, there is a substitution for a
term in T(ϕ), ti such that χ(vi) P Γ. Hence by induction hypothe-
sis, T ( χ(vi) which means by hypothesis that T ( DiPIviχ(vi). The
converse is immediate. ˝

Theorem 3.9.2. Assume that κăκ = κ. Then the calculus Lκ+ ,κ is rela-
tionally sound and complete.

Proof. Soundness as usual is obvious in all cases except perhaps the
rule of Dependent Choices; this follows by the set theoretic assump-
tions of our meta-theory (namely, the fact that dependent choice holds
in the outside universe). Now assume that&Lκ+ ,κ

ϕ. Form ∆ and T(ϕ)
as before. Let the following list all formulas which are existentially
quantified in ∆:

S = tDiPIviψ(vi)γ : |I| ă κ, γ ă κu
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For each such formula we can find a fresh collection of symbols ci for
i P I, and we consider the formulas Wη := DiPIviψ(vi)γ Ñ ψ(ci). Note
that there are at most κ many such formulas, so this adds at most κ

many constants. We let:
Fϕ

be the free Boolean algebra obtained by closing ∆ underă κ-operations,
as well as adding the meet␣ϕ^

Ź

αăκ Wα. Note the resulting algebra
is still of size at most κ. Then we claim that:

[␣ϕ^
ľ

αăκ

Wα] ‰ [K]

Indeed, suppose that it was. Then by definition,$ ␣(␣ϕ^
Ź

αăκ Wα),
so$ ␣ϕ Ñ

Ž

αăκ ␣Wα. Unfolding this means that$ ␣ϕ Ñ
Ž

αăκ DiPIviψ(vi)^

␣ψ(ci)α. From this we can infer, by propositional reasoning, that
$

Ž

αăκ ϕ _ DiPIviψ(vi) ^ ␣ψ(ci)α, hence by the law of dependent
choices, and given that the variables are all fresh where they must,
we infer $ @iPI0 ciϕ _ @x0W0 _ ..._ Dηăλvη@vλWλ...; distributing the
universal quantifiers, since there is no clash of variables, we obtain
DiPIviψ(vi)^ @iPIvi␣ψ(vi) for each such clause. Hence, we conclude
that $ ϕ, which is a contradiction. Hence by reductio, we have that
[␣ϕ^

Ź

αăκ Wα] ‰ [K].
With this in place, we now let Q consist of all infinitary meets in Fϕ,

and by hypothesis on κ-representability, obtain a Q-filter on the alge-
bra containing ␣ϕ^

Ź

αăκ Wα. If P is such a Q-filter, we can consider
P1 = tψ : [ψ] P Pu, and we can show that this satisfies the conditions
of Lemma 3.9.1; we only check the last condition. Indeed if there is a
substitution ψ(ti) P P, then because ψ(ti) Ñ Dviψ(vi), Dviψ(vi) P P1.
Otherwise, assume that Dviψα(vi) P P1; then since Wα P P1, by deduc-
tive closure, ψα(ci) P P1.

Now by Lemma 3.9.1, we have that ␣ϕ is satisfiable in a model T.
This shows completeness. ˝

3.10 Distributivity and Representability in Heyting algebras

Lemma 3.10.1. Let H be a complete Heyting algebra. Then the fol-
lowing are equivalent:

1. H is a complete homomorphic image of a completely join-prime
generated algebra H1;

2. H is completely distributive.

Proof. First assume that (1) holds. Let (ai,j)iPI,jPJ be a doubly indexed
family of elements. Let f (ci,j) = ai,j be elements in H1. Then note that:

ľ

iPI

ł

jPJ

ai,j = f
(ľ

iPI

ł

jPJ

ci,j
)

= f
(ł

t
ľ

iPI

ci,g(i) : g P J Iu
)

=
ł

t
ľ

iPI

ai, f (i) : g P J Iu
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Now assume that (2) holds. Let H1 be the lattice of downwards
closed subsets of H. Note that this is a completely join-prime gener-
ated Heyting algebra when we consider arbitrary unions and inter-
sections. Now assume that tSi : i P Iu is an indexed collection of
downwards closed subsets. Denote by M(I) the collection of func-
tions g from I Ñ L, such that g(i) P Si. Then note that:

ľ

tSi : i P Iu = t
č

g[I] : g P M(I)u

Indeed, if x P Si for each i, then let g be a function mapping constantly
to x; then this belongs to the set

Ş

g[I]. Conversely, let S be a set of
the form

Ş

g[I], then x must belong to each of these subsets.
Now define the map f : H1 Ñ H as follows: f (S) =

Ž

S. By
completeness of H this is well-defined. We check that f preserves the
operations: it is easy to see that it will preserve the complete union; if
(Si)iPI is a collection of downwards closed subsets, then:

f (
ľ

tSi : i P Iu) =
ł

t
č

iPI

g(i) : g P M(I)u

=
ľ

iPI

ł

lPL

Si

=
ľ

iPI

f (Si)

which shows preservation of complete meets. Finally, assume that
V = U ñ W. Then assume that c ^ f (U) Ď f (W). Consider Óc,
and note that then ÓcXU Ď W: indeed, if x ď c and x ď

Ť

U, then
x ď c ^ f (U) ď f (W), so since W is downwards closed, x P W.
Hence Óc Ď V, hence c ď f (V), as intended. Hence we have that f is
a complete homomorphism, and it is clearly surjective, as desired. ˝
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[MP89] M. Makkai and R. Paré. Accessible Categories: The Foundations of Categorical Model Theory: The
Foundations of Categorical Model Theory. Contemporary mathematics - American Mathematical
Society. American Mathematical Society, 1989. ISBN: 9780821851111. URL: https://books.
google.nl/books?id=ExIcCAAAQBAJ.

[Ran52] G. N. Raney. “Completely distributive complete lattices”. In: Proceedings of the American Math-
ematical Society 3.5 (1952), pp. 677–680. DOI: 10.1090/s0002-9939-1952-0052392-3. URL:
https://doi.org/10.1090/s0002-9939-1952-0052392-3.

https://doi.org/10.1090/conm/302/05080
https://doi.org/10.1090/conm/302/05080
https://doi.org/10.1090/conm/302/05080
http://eudml.org/doc/213737
https://doi.org/10.1007/b98860
https://doi.org/10.1007/b98860
https://doi.org/10.1007/b98860
https://books.google.nl/books?id=ExIcCAAAQBAJ
https://books.google.nl/books?id=ExIcCAAAQBAJ
https://doi.org/10.1090/s0002-9939-1952-0052392-3
https://doi.org/10.1090/s0002-9939-1952-0052392-3

	Preliminary Notions
	Morley's Theorem
	Abstract Elementary Classes
	Accessible Categories
	Categorical Logic
	Models as Functors

	Introduction to Topos Theory
	What is Topos Theory About?
	Grothendieck toposes
	Classifying toposes

	Infinitary Logic
	A Tour in Known Lands
	Infinitary First-Order Classical Logic
	Algebraic and Relational Models
	Propositional Transfinite Transitivity Rule
	First-order Infinitary Coherent Logic
	First-Order Infinitary Intuitionistic Logic
	Set-Theoretic and Algebraic Rasiowa-Sikorskis
	Proof that -representability implies completeness
	Proof of completeness of First-order Infinitary Calculus
	Distributivity and Representability in Heyting algebras

	Bibliography

