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1 Set Theory

Exercise 1.1. The following results are used often in topology: given two sets X,Y , a function f : X Ñ Y ,
sequences of subsets tSiuiPI Ď PX, tTiuiPI Ď PY and subsets S Ď X, T Ď Y , we have that

1. f r
Ť

iPI Sis “
Ť

iPI f rSis.

2. f r
Ş

iPI Tis Ď
Ş

iPI f rTis.

3. f´1r
Ť

iPI Tis “
Ť

iPI f
´1rTis.

4. f´1r
Ş

iPI Tis “
Ş

iPI f
´1rTis.

5. f rSs X T “ f rS X f´1rT ss

Furthermore, if f is injective then 2 is an equality.
Prove these identities.

2 Basic Topology

Exercise 2.1. 1. Prove that the real line topology is really a topology.

2. Prove that the topology defined over the Cantor set is really a topology.

Exercise 2.2. Let pτiqiPI be a collection of topologies on a set X.

(a) Is their intersection
Ş

iPI τi (necessarily) a topology on X?

(b) Is their union
Ť

iPI τi (necessarily) a topology on X?

(c) Show that there is a greatest topology τ on X such that τ Ď τi for all i P I. (with “greatest” we mean
that if τ 1 is some other topology such that τ 1 Ď τi for all i P I, then τ

1 Ď τ)

(d) Show that there is a least topology τ on X such that τi Ď τ for all i P I.

Now let X “ tx, y, zu, τ0 “ t∅, X, txu, tx, yuu and τ1 “ t∅, X, txu, ty, zuu.

(e) Find the greatest topology τ on X such that τ Ď τ0 and τ Ď τ1.

(f) Find the least topology τ on X such that τ0 Ď τ and τ1 Ď τ .
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3 Closures, Interiors and Neighbourhoods

Definition 3.1. Let pX, τq be a topological space. We say that a set U P PpXq is closed if its complement
is open; i.e., if pX ´ Uq P τ . %

Definition 3.2. Let pX, τq be a topological space and S Ď X arbitrary. We denote by clpSq or S the closure
of S, the smallest closed set K such that S Ď K; that is, clpSq is the intersection of all closed sets containing
S. We denote by intpSq the interior of S, the largest open set K such that K Ď S; that is, intpSq is the
union of all open sets contained in S. %

Remark 3.1. Using this definition, we have that a set S is closed if and only if S “ S, and open if and only
if S “ intpSq. We call the operators

int : PpXq Ñ PpXq, S ÞÑ intpSq

and
cl : PpXq Ñ PpXq, S ÞÑ clpSq

the topological interior and topological closure, respectively. As the reader will find in the exercises, interior
and closure operators provide an alternative, but equivalent, form of describing topologies. %

Definition 3.3. Given a topological space pX, τq and a point x P X, we say that V Ď X is a neighbourhood
of x if and only if there is an open set U such that x P U Ď V .

Moreover, observe that if a neighbourhood V of a point x is open, the definition simplifies: V is an open
neighbourhood of a point x if and only if x P V and V is open.1 %

Define Npxq “ tU P τ | x P Uu.

Remark 3.2. (Epistemic intuition: what is an (open) neighbourhood? ) The open neighbourhoods of a point
x have a neat epistemic interpretation: they are precisely the verifiable propositions true at world x (i.e.,
the propositions that in fact can be verified at x – assuming that only true propositions can be verified).
One can also come up with an epistemic interpretation of a neighbourhood simpliciter, but it seems a rather
artificial concept; all intuitions, including our epistemic one, have their shortcomings. %

Proposition 3.4. Suppose X is a topological space and S Ď X. Then the following are equivalent for a
point x P X:

• x is in the closure of S; i.e., x P clpSq.

• All open neighbourhoods U of x have non-empty intersection with S; i.e., U X S ‰ ∅.

Exercise 3.1. Show the following results about neighbourhoods

1. For every U P Npxq, we have that x P U .

2. Npxq is closed under finite intersections - given a finite sequence tViuiPI Ď Npxq, we have that
Ş

iPI Vi P
Npxq.

3. Npxq is an up set - if U P Npxq and U Ď V , then V P Npxq.

4. For every U P Npxq, there exists some V P Npxq, such that V Ď U and for every y P V , U P Npyq.

A collection of subsets satisfying conditions (1)-(4) is called a filter.
Given a set X with a map N : X Ñ PPX such that Npxq is a filter for every x P X, show that N induces

a topology on X. (Hint: set U to be open if and only if for every x P U we have that U P Npxq).

1In the literature, you will sometimes find that a neighbourhood simpliciter already is required to be open. We do not adopt
that convention, but simply speak of ‘open neighbourhoods’ when needed.
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Exercise 3.2. Prove the following identities for the closure and interior operators. For any topology pX, τq
and sets A,B Ď X, we have that:

• A Ď clA and intA Ď A (extensivity and intensivity).

• If A Ď B, then clA Ď clB and intA Ď intB (monotinicity).

• cl pclAq “ clA and int pintAq “ intA (idempotency).

• clA “ Xzint pXzAq and intA “ Xzcl pXzAq (duality).

• intAX intB “ int pAXBq and clAY clB “ cl pAYBq.

• intAY intB Ď int pAYBq and clAX clB Ď cl pAXBq.

– Can you come up with an example where equality does not hold? Hint: think of the standard
topology on R.

Exercise 3.3. We say that U is regular open if int cl U “ U . Given two regular open sets U, V and a
collection tUiuiPI of regular opens

• Show that U X V is regular open.

• Show that int cl pU Y V q is regular open.

• Show that int cl p
Ť

iPI Uiq is regular open.

• For any subset A, we have that int cl int clA “ int clA.

4 Topology and Modal Logic

In Modal Logic you were introduced to the epistemic modal logic S4; defined through the following rules:

• If I can verify that φ implies ψ, then if I verify φ, then I verify ψ: lpφÑ ψq $ plφÑ lψq (K axiom).

• If I can verify φ, then φ is true: lφ $ φ (T axiom).

• If I can verify φ, then I can verify my verification of φ: lφ $ llφ (4 axiom).

Exercise 4.1. 1. Can you think of a topological operator that behaves like l? Hint: look at exercise
3.2.

2. Prove the following identity:
int p␣AYBq Ď ␣pclAq Y intB

(a) Show that for any sets A,B,C, we have that C Ď ␣AYB if and only if C XA Ď B.

(b) Show that int p␣AYBq X clA Ď intB. Hint: all the tools you need are in exercise 3.2.

(c) We interpret A Ñ B as ␣A Y B and $ as Ď. Confirm that every topological space is an S4
system.

You were also introduced to neighbourhood semantics: a neighbourhood frame is a pair xW,N y where W
is a set of worlds and N is a map W Ñ PPW . A model is a tuple xW,N, V y where V is a valuation
function V : At Ñ PW . We write JpK :“ V ppq :“ tw P W | M,w ( pu. A formula φ is interpreted as
JφK “ tw PW |M,w ( φu and l is interpreted as lφ “ tw PW | NwJφKu.

Exercise 4.2. 1. Verify that every topological space is a neighbourhood frame (what is N ?)
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2. Verify that the topological l operator coincides with the neighbourhood semantics l operator on that
neighbourhood.

Example 4.1. Assume that S4 is valid on the frame xW,N y but the frame does not satisfy condition 3.1(1).
That is, there exists w PW and U P Npxq such that x R U .

As the frame satisfies S4, it satisfies lp $ p.
Pick a proposition p and a model M “ xW,N , V y such that V ppq “ U . Then M, x $ lp which implies

that M, x $ p. But then x P V ppq “ U . Which is a contradiction. Meaning that every S4 frame satisfies
condition 3.1(1).

Exercise 4.3. Show that every S4 neighbourhood frame is a topological space. Hint: use exercise 3.1(1)
and look at the example.

• Show that every S4 neighbourhood frame satisfies condition 3.1(2)Hint: use the fact that inmathbfS4
we have lp^lq $ lpp^ qq.

• Show that every S4 neighbourhood frame satisfies condition 3.1(3)Hint: use the fact that inmathbfS4
we have lpp^ qq $ lp^lq.

• Show that every S4 neighbourhood frame satisfies condition 3.1(4).
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