
Exercise Sheet 2

January 2024

1 Continuity

Recall that we say that given two topological spaces f : X Ñ Y , a function is continuous if for each open
set U Ď Y , f´1rU s is open. We say that it is open if for each open set U Ď X, f rU s is open. We furthermore
say that f is closed if for each closed set V , f rV s is closed.

Exercise 1.1. Let f : X Ñ Y be two partially ordered sets equipped with the Alexandroff topology. Recall
that in the lecture it was shown that f is continuous if and only if it is monotone; and it is open if and only
if it satisfies the back condition. Give conditions, like those presented in class, for f to be a closed map.

Exercise 1.2. Show the following are equivalent for a map f : X Ñ Y :

1. f is continuous;

2. Inverse images of closed sets are closed;

3. For each set B, f´1rintpBqs Ď intpf´1rBsq.

Definition 1.1. Given a space pX, τq, an equivalence relation „ on X and the quotient map q : x Ñ rxs :“
ty P X | x „ yu, we define the quotient topology τ{ „ on X{ „ as U P τ{ „ if q´1rU s P τ .

Exercise 1.3. Let pX, τq, pY, τ 1q be topological spaces and „ an equivalence relation on X. Let f : pX, τq Ñ

pY, τ 1q be a continuous map such that for any x, y P X such that x „ y, we have that fpxq “ fpyq. Show
that there exists a unique continuous map g : pX{ „, τ{ „q Ñ pY, τ 1q such that gq “ f .

pX, τq

pX{ „, τ{ „q pY, τ 1q

q f

g

Exercise 1.4. Consider the subspaces: the interval I “ r0, 1s and the unit circle S1 “ tx P R2 | |x| “ 1u.
Consider also the equivalence relation „ on I defined as x „ y if x “ y or x, y P t0, 1u.

Show that pI{ „, τ{simq – S1. Hint: Show that the map x ÞÑ psin 2πx, cos 2πxq is well defined and
induces a homeomorphism.

2 Metric Spaces

Given R with the standard topology, there is a different definition of continuity which is familiar if you
have taken a calculus or analysis course:
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Definition 2.1. Let f : R Ñ R be a map. We say that f is analytically continuous at a point c if and only
if for any ε ą 0, there exists a δ ą 0 such that for any x P R, if |c´x| ă δ then |fpcq ´ fpxq| ă ε. A function
is analytically continuous if and only if it is analytically continuous at every point c.

Denote: Bc
r “ tx P R | |x ´ c| ă ru. This is often called the open ball around c of radius r. Notice that

analytic continuity amounts to for all Bc
δ there exists B

fpcq
ε such that if x P Bc

δ then fpxq P B
fpcq
ε .

Exercise 2.1. 1. Given an open set U in the standard topology on the reals, show that for any x P U
there exists ε such that Bx

ε Ď U .

2. Show that for a map f : R Ñ R it is analytically continuous if and only if it is continuous with regards
to the standard topology on R.

One of the first reasons people have explored topology is to axiomatise the meaning of a metric space

Definition 2.2. A metric space is a pair pX, dq with a set X and a map d : X ˆ X Ñ r0,8q, such that for
any x, y, z P X, the following conditions hold:

1. dpx, xq “ 0.

2. If x ‰ y, then dpx, yq ą 0 (separation).

3. dpx, yq “ dpy, xq (symmetry).

4. dpx, zq ď dpx, yq ` dpy, zq (triangle inequality).

Exercise 2.2. Verify that R with the distance function |y ´ x| forms a metric space. Hint: Show that
|x´ y|2 ď p|x´ z|` |z ´ y|q2 and use the fact that for any a, b ą 0 we have that a2 ď b2 if and only if a ă b.

In fact, we also have that R2 with the Euclidean distance function dppx1, y1q, px2, y2qq “
a

py2 ´ y1q2 ` px2 ´ x1q2

is a metric space.

Exercise 2.3. We define a ball in a metric space pX, dq as Bpx, rq “ ty P X | dpx, yq ă ru. Show that the
balls are closed under binary intersections and that it covers X. We call this the metric topology.

Notice that on the real line, the metric topology is the standard topology.

Definition 2.3. Given two metric spaces pX, d1q and pY, d2q we define an isometry to be a bijective map
f : pX, d1q Ñ pY, d2q such that for any x, y P X we have that dpfpxq, fpyqq “ dpx, yq

Exercise 2.4. Show that every isometry is a homeomorphism.

Exercise 2.5. Given a metric space pX, dq, a topological space pY, τq and a homeomorphism f : pY, τq Ñ

pX, dq, show that f induces a metric space on pY, τq.

3 Filters and Filter Convergence

In class we saw the definition of a filter base and of filter convergence. We briefly recall these definitions
here:

Definition 3.1. Let X be a set. We say that a collection of subsets F Ď PpXq ´ tHu is a filter base if it
satisfies the following:

• X P F ;

• If A,B P F then A X B P F .

We say that a given filter base is a filter if it is upwards closed: whenever A P F and A Ď B then B P F .
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Solve the exercise from the previous exercise sheet, now with a newfound glee from understanding the
definition of a filter:

Exercise 3.1. Show that neighbourhoods are a filter such that:

1. For every U P Npxq, we have that x P U .

2. Npxq is closed under finite intersections - given a finite sequence tViuiPI Ď Npxq, we have that
Ş

iPI Vi P

Npxq.

3. Npxq is an up set - if U P Npxq and U Ď V , then V P Npxq.

4. For every U P Npxq, there exists some V P Npxq, such that V Ď U and for every y P V , U P Npyq.

A collection of subsets satisfying conditions (1)-(4) is called a filter.
Given a set X with a map N : X Ñ PPX such that Npxq is a filter for every x P X, show that N induces

a topology on X. (Hint: set U to be open if and only if for every x P U we have that U P Npxq).

Exercise 3.2. Let ta, b, cu be a set with three elements. Describe all filters and filter bases on this set.

Exercise 3.3. Let pX, τq be a topological space. Show the following:

1. If F is a filter base, then
ÒF “ tA Ď X : DB P F,B Ď Au,

is a filter.

2. Let F Ď PpXq. We say that F has the finite intersection property if for all A0, ..., An P F , A0X...XAn ‰

H. Show that if F has the FIP then

FX “ tA0 X ... X An : A0, ..., An P F u

is a filter base.

Definition 3.2. Given a topological space pX, τq and a filter F on X, we say that F is a convergent filter
to some point x P X if for any U P Npxq we have that U P F .

Exercise 3.4. Consider the subspace r0, 1s of R. We call a sequence tan : n P ωu a converging sequence to
a limit x if for any U P τ , x P U implies that there exists a natural number N such that for any n ą N we
have that an P U .

• Show that in r0, 1s, the limit is unique. That is, if a sequence converges, it converges to a unique point
x. Hint: assume the opposite and construct two open sets that contradict this assumption.

• Show that each converging sequence defines a converging filter, and each converging filter contains a
converging sequence.

Exercise 3.5. Describe converging filters over the Cantor space.
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4 The Topology Poem

Let’s get down to business, to defeat confusion, Did they send me students, when I asked for
solutions? You’re the math-iest bunch I ever met, But you can bet, before we’re through,
Students, I’ll make a topologist out of you.

Tranquil as a torus, but on proof within, Once you find your lemma, you are sure to win. You’re
a jumbled, complex, chaotic lot, And you haven’t proved a thing. Somehow I’ll make a
topologist out of you.

I’m never gonna skip a class, Say goodbye to those easy As, Boy, was I a fool in school for taking
gym! This proof’s got me scared to death, Hope it doesn’t see right through my sketch. Now
I really wish that I knew what a ”lim” is.

We must be sharp as the Euler’s insight, (With logic!) With all the force of a great bijection,
(With logic!) With all the strength of a bounded sequence, Mysterious as the dark side of
the Möbius strip.

Time is racing toward us, till the finals arrive, Heed my every theorem, and you might survive.
You’re unsuited for the rage of proof, So pack up, go home, you’re through. How could I
make a topologist out of you?

We must be sharp as the Euler’s insight, (With logic!) With all the force of a great bijection,
(With logic!) With all the strength of a bounded sequence, Mysterious as the dark side of
the Möbius strip.
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