Our last time together :(

January 2024

1 Compactifications

For the purpose of this exercise sheet we will let the notion of "compactification" mean what is called in the slides a "decent compactification".

Exercise 1.1. Let X be a topological space. Let $\mathcal{C}(X)$ be the class of all compactifications of X. Define a relation on this as follows: $(Y_1, c_1) \leq (Y_2, c_2)$ if there is a continuous function $f : Y_2 \to Y_1$ such that $fc_2 = c_1$. Show that \leq is a preorder relation. Moreover show that if $Y \leq Z$ and $Z \leq Y$ then there is a homeomorphism between Y and Z.

Exercise 1.2. Let X be the space of \mathbb{N} with the discrete topology.

- 1. Consider the space $(\mathbb{N} \cup \{\omega\}, \tau)$ where τ is the topology generated by the basis of finite and cofinite sets. Verify that this is a topology and prove that this is homeomorphic to the Alexandroff compactification of the discrete topology over \mathbb{N} .
- 2. Consider the space $\mathbb{N}^* = (\mathbb{N} \cup \{\omega_0, \omega_1\}, \tau^*)$ where τ^* is the topology generated by the following subbasis:

 $\mathsf{Fin}(\mathbb{N}) \cup \{\{2n : n \in \omega\} \cup \{\omega_0\}\} \cup \{\{2n+1 : n \in \omega\} \cup \{\omega_1\}\}.$

Show that this space is a Stone space, and that it is a compactification of \mathbb{N} . Also show that:

$$\alpha(\omega) < \mathbb{N}^* < \beta(\omega)$$

with respect to the preorder defined in 1.1.

2 Connectedness

Exercise 2.1. Give an example of a path $p: [0,1] \to X$ connecting a to b in the space

$$(\{a, b, c, d\}, \{\varnothing, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, d, c\}, X\})$$

([1])

A space (X, τ) is path-connected if a path connects any $x, y \in X$. That is for any $x, y \in X$, there exists a continuous map $p: [0,1] \to X$ such that p(0) = x and p(y) = 1.

Lemma 2.1. For any subset B of \mathbb{R} that is bounded above (i.e. there exists some upper bound a of B such that for any $b \in B$ we have that $b \leq a$), there exists a real number m such that m is an upper bound of B and for any other upper bound a of B we have that $b \leq a$. We call m the supremum.

Exercise 2.2. 1. Show that the connected subsets of \mathbb{R} are the intervals.

- 2. Show that if X is connected or path-connected and $f: X \to Y$ is a continuous map, then f[X] is connected or path connected.
- 3. Conclude that every path-connected space is connected.

Lemma 2.2 (Brouwer's fixed point theorem - one dimensional case). For every continuous function $f : [-1,1] \rightarrow [-1,1]$, there exists a point $x \in [-1,1]$ such that f(x) = x.

Exercise 2.3. Prove Brouwer's fixed point theorem. **Hint:** assume for contradiction that it is false and show how this would imply that the interval is not connected.

Exercise 2.4. The topologist's sine curve is given by the set $(0,0) \cup \{(x, \sin \frac{1}{x}) \mid x > 0\}$. Notice that

$$\mathbb{R}^+ \to (\mathbb{R}^+)^2$$
$$x \mapsto (x, \sin\frac{1}{x})$$

is a continuous map.

Show that the topologist's sine curve is connected. Is it path-connected?

3 Homotopies

We say that x is homotopic to y, denoted by $x \sim y$ if they are path-connected.

Exercise 3.1. Show that path connectedness forms an equivalence relation on a space X. That is \sim is a reflexive, symmetric and transitive relation.

Given two functions $f, g: X \to Y$, we say that they are homotopic $(f \sim g)$ if there exists a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x), H(x, 1) = g(x).

Exercise 3.2. We call paths $p: [0,1] \to X$ such that p(0) = p(1) = x loops based on x. Show that \sim is an equivalence relation on the collection of loops based on x.

Given two spaces(!) X and Y, we say that X and Y are homotopic $(X \simeq Y)$ if there exists a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that $fg \sim Id_Y$ and $gf \sim Id_X$.

Exercise 3.3. 1. Show that $\mathbb{R}^2 \simeq \{0\}$.

2. Show that $\mathbb{R}^2 \setminus \{0\} \simeq S^1$.

Show them what a covering is:

We define a covering to be a map $p: \tilde{X} \to X$ such that there exists an open cover $\{U_{\alpha}\}$ of X, such that for every α , the preimage is a disjoint union of open sets

$$p^{-1}(U_{\alpha}) = \bigsqcup V_{\alpha}^{\beta}$$

and such that the restriction $p \upharpoonright_{V_{\alpha}^{\beta}} : V_{\alpha}^{\beta} \to U_{\alpha}$ is a local homeomorphism.

Exercise 3.4. Show that the map

$$p_{\infty} : \mathbb{R} \to S^1$$
$$t \to (\cos 2\pi t, \sin 2\pi t)$$

is a covering.

References

[1] T.D. Bradley, T. Bryson, and J. Terilla. Topology: A Categorical Approach. MIT Press, 2020.

