TOPOLOGY PROJECT, 1ST LECTURE

Søren Brinck Knudstorp January 8, 2024

Universiteit van Amsterdam

Plan for the day

- A few announcements
- Structure of the lecture
- Actual lecture
- Break from 11h45-12h
- More lecturing

Announcements and structure

Announcements:

- Lecture notes available on the website; will be updated throughout the project
- First assignment to be published on Wednesday (deadline: Feb 9th)

Structure of the lecture:

- · Lecture covers (most of) the content of the lecture notes
- · Both slides and blackboard
- @People on Zoom: If you have a question, let Rodrigo know

The concept of a topological space

Definition (topological space)

Let X be a set. $\tau \subseteq \mathcal{P}(X)$ is a topology on X :iff

- (O1) \varnothing and X are in τ ; i.e., $\varnothing \in \tau$ and $X \in \tau$.
- (O2) au is closed under arbitrary unions.
- (O3) τ is closed under *finite* intersections.

Terminology:

- \cdot τ is a topology on X
- (X,τ) is a topological space (or simply: X is a top. sp.)
- $U \in \tau$ is open
- Appears abstract and arbitrary
- We will give it a rich epistemic meaning

Epistemic intuition

Definition (topological space)

Let X be a set. $\tau \subseteq \mathcal{P}(X)$ is a topology on X:iff

- (O1) \varnothing and X are in τ ; i.e., $\varnothing \in \tau$ and $X \in \tau$.
- (O2) τ is closed under arbitrary unions.
- (O3) τ is closed under finite intersections.

Epistemic interpretation:

- (X) We think of X as a set of 'epistemic worlds'.
- (au) We think of $au \subseteq \mathcal{P}(X)$ as corresponding to the set of 'verifiable propositions'.

5

What is a 'verifiable proposition'?

Verifiable propositions

What is a proposition?

See Blackboard

What does 'verifiable' mean?

Consider the propositions

 $(\exists \neg WS)$ There is a non-white swan.

and its negation

 $(\forall WS)$ All swans are white.

Definition

A proposition P is *verifiable* :iff whenever P is true at a world x (i.e., $x \in \llbracket P \rrbracket$), it is possible to verify P at x (i.e., verify $x \in \llbracket P \rrbracket$).

Let's check that (O1)-(O3) are satisfied

Epistemic intuition (cont.)

- 1. *See blackboard for example*
- 2. Why this asymmetric definition of a topological space?
 - · Arbitrary intersections? (see blackboard)
 - · Complements? (see blackboard)
- 3. Summary:

Logic	Topology
Epistemic worlds/situations/models/etc.	Points, $x \in X$
Verifiable propositions	Open sets, $U \in \tau$

- 4. Examples of top. spaces (blackboard):
 - $X = \{x, y, z\}$ with mult. (non-)tops
 - · Discrete and indiscrete
 - · S4 frames

Basis and subbasis

Definition (basis and subbasis)

Given a top. sp. (X,τ) , $\mathcal{B}\subseteq \tau$ is a basis for the topology τ :iff $\forall U\in \tau, \exists (V_i)_{i\in I}\subseteq \mathcal{B}$ s.t.

$$U = \bigcup_{i \in I} V_i.$$

Further, $S \subseteq \tau$ is a subbasis for the topology :iff $\{\bigcap_{V \in M} V \mid M \subseteq S, M \text{ is finite}\}$ forms a basis for the topology.

Terminology: Given a (sub)basis $\mathcal{B} \subseteq \tau$, we call members $U \in \mathcal{B}$ (sub)basic opens.

Proposition

Let X be a set and $C\subseteq \mathcal{P}(X)$ a collection of sets. Then there is a (unique) topology on X for which C is a subbasis.

Moreover, if (1) C covers X (i.e., $\bigcup_{U \in C} U = X$) and (2) C is closed under finite non-empty intersections, then there is a (unique) topology on X for which C is a basis.

Proof idea

See blackboard.

Epi. int.: what is a (sub)basis?

Examples of (sub)bases

Epistemic example

Let $X = \{a, b, c, d\}$ where a, b, c, d are worlds described as follows:

	All ravens are black	Some raven is non-black
$(\forall WS)$	a	b
$(\exists \neg WS)$	c	d

^{*}See blackboard for rest of example*

More examples (see blackboard):

- · Real line topology
- · Cantor and Baire spaces

Comparing topologies

Definition

Let X be a set, and τ and τ' two topologies on this set. We say that τ is a *coarser topology* than τ' if $\tau \subseteq \tau'$. Conversely, we say that τ' is *finer* than τ .

(Highly useful) lemma

Suppose X is a set with two topologies τ and τ' , and \mathcal{B}_{τ} and $\mathcal{B}_{\tau'}$ are bases for these topologies, respectively. Then $\tau \subseteq \tau'$ iff for all points $x \in X$ and all basic τ -open $U \in \mathcal{B}_{\tau}$ containing x, there is some basic τ' -open $U' \in \mathcal{B}_{\tau'}$ such that $x \in U' \subseteq U$.

Proof

See blackboard.

Comparing tops on ${\mathbb R}$

Euclidean top and top gen. by basis $\{(l, \infty) \mid l \in \mathbb{R}\}$. See blackboard.

