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Chapter 1

Introduction

Topology is the study of space as an abstract concept. Its origins lie in the 19th century, where
it served an attempt to unify work from analysis, and provide a solid foundation for geometry,
unifying a number of hitherto separate subjects. Thus, the modern notion of topological space
appears as the culmination of a process of abstraction which started with an axiomatisation of
“usual space” — what is now called Euclidean space — and now includes an unending range of
applications.

Some particularly relevant connections have always existed betwen topology and its geometric
intuition, and logic. In a sense, logic and geometry have a very flirtatious relationship. For instance,
one sees easily a connection between logical connectives and the basic set theory operations:
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This relationship is made further clear when one studies set theory, as there it becomes clear that
some form of the axiom of comprehension is used to specify the basic set theoretic definitions on
the basis of their logical counterparts.

However, all of this theory is developed on the back of first-order logic. Often times logicians
are concerned with spicy types of logics. In this sense, topology can be thought to stand with
respect to epistemic logic as set theory does to first-order logic.

Logic Geometry
First-order logic | Set theory
Epistemic logic | Topology

In the following lecture notes we will introduce topology, keeping this connection in mind. These
notes are part of a coordinated project at the ILLC, taking place in January 2024. They contain
proposed exercises, as well as several propositions which are left as an exercise for the reader.’

!These lecture notes are inspired by and partly based on three sources: Steven Vickers (1989), Topology via Logic;
James Munkres (2014), Topology; Ryszard Engelking (1968), General Topology. The former one for the epistemic
intuition, and the latter two for the actual mathematical content.



In the next sections we fix some notation that will be needed throughout these notes. We
assume the reader is familiar with elementary set theory, and has a passing familiarity with the
real numbers.

1.1 Set-Theoretic Notation

We write w to mean the natural numbers. We refer to sets of sets as families or collections of
sets. We write n for intersection and u for union of sets. When necessary we also have indexed
versions of these operations: if (U;);es is an indexed collection of sets, we write:

U U; and ﬂ Ui,
iel el

for the sets {x : Jie [,z € U;} and {z : Vie I,z € U;}. We write | |,_; U; for the disjoint union:

J{@, i) :x e U}

Given a collection of sets indexed on the natural numbers (Up,)new we say that this is a non-
decreasing (resp. non-increasing) collection if U,, € U, for each n (resp. U, 2 U,4+1). We say
that it is éncreasing (resp. decreasing) if the inclusion is strict.

Given a set X, we write X x X for the set of ordered pairs of elements of X, and denote its
elements by (z,y) (or sometimes (z,y)) where x,y € X, and call this the cartesian product. We
call a subset R € X x X a relation. We say that R is an equivalence relation if it is:

o (Reflexive): for every x € X, zRux;
o (Symmetric): for every z,y € X, xRy implies yRx;
o (Transitive): for every z,y,z € X, xRy and yRz implies xRz.

Given an equivalence relation we write [x]g for the equivalence class of x, often dropping the
subscript when it is understood. We write X /R for the quotient set, i.e., the set {[z]r : x € X}.
Throughout we write P(X) for the power set of X. We denote by P(X)/™ the set of finite
subsets of the set X. We also denote by X <% the set of finite sequences of elements from X.
Given a function f: X — Y between two sets, we associate with it two natural operators:
f:P(X)—-PY)
Avs f[A] = {f(w) s we A}

and

7 PY) > P(X)
B f7B] = {z: f(z) e B}.

We call the former the direct image of f and the latter the inverse image or preimage of f. We
recall that the preimage interacts naturally with both unions and intersections, i.e., for each family

(U;)ier of sets:
UUi = Uffl[Ui] and ! [ﬂ U;

el el el
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1.2 Partial Orders

If R is a relation on X we say that R is a partial order if it is reflexive, transitive and antisym-
metric:

o (Antisymmetry): for every x,y € X, if xRy and yRx then x = y.

We say that a partial order is furthermore total or linear if for all x,y € X either xRy or yRx.
We normally use the symbol < to mean a partial order and refer to a pair (X, <) as a partially
ordered set or poset. We often use < to denote the irreflexive variant of this structure:

r<y < rz<yandz#y

Given a subset S € X, we say that S has an upper bound if there is some z € X such that for
each a € S, a < z; we say that S has a least upper bound, if there is some a, an upper bound, such
that whenever b is an upper bound, then a < b. We say that X has the least upper bound property
if every S € X has a least upper bound.

Given a poset (X, <), we say that a collection of elements (z;);es is totally ordered or a chain
if for each ¢,j € I either x; < ; or z; < x;. We say that an element x € X is mazimal if for each
ye X if x <y then y = x.

Given a totally ordered set (X, <), we say that this is dense if whenever z < y there is some z
such that z < z < y. We assume the reader is familiar with a few basic ordered sets:

o The natural numbers (N, <); this is countable, and has the property that every subset has a
least element;

o The integers (Z, <);

o The rationals (Q, <); this is countable and dense;

o The reals (R, <); this is dense, and has the least upper bound property.
An important kind of ordered set we will sometimes need is the following:

Definition 1.2.1. Let (P, <) be a linearly ordered set. We say that P is a well-order if each subset
S C P has a least element. =

One can look at the isomorphism types of these well-orders and pick specific representatives;
these are what we call ordinals. We usually denote them by Greek letters, «, 5, etc. The main fact
we will need about ordinals is that there exist uncountable ordinals; we will denote the least such
by wi.

1.3 Products and the Axiom of Choice

Given a collection (X;);er we write [ [,.; X; for the following collection of functions:

el
{f:IHUXiWieI,f(i)eXi}.
iel

We also call this the Cartesian product of these sets.



We will in some specific points require forms of the Aziom of Choice.? This says the following:

Axiom 1.3.1. For every collection of sets (X;)ier, there is a function f : I — | |,_; X; such that
for each i € I, there is an x € X; such that f(i) = (x,1).

We will need in particular the following equivalent formulation of this:

Lemma 1.3.2. (Zorn’s Lemma) Let (X, <) be a partially ordered set. If for each chain (x;)er,
there exists some zg € X such that x; < zq for each i € I, then X has a maximal element.

This will prove important especially when we meet the concept of an ultrafilter, and look more
broadly at compact topological spaces.

1.4 Exercises

Exercise 1.1. The following results are used often in topology: given two sets X,Y, a function
f: X =Y, sequences of subsets {S;}icr € PX, {T;}icr € PY and subsets S <€ X, T < Y, we have
that

* [lUier Sil = Uies F15i]-

o flMier Tl = Mies FIT2)-
FHUier T = Uies £7HT]
FHMier T = Mier fHT-
« fISInT = fISn fHT]]

Furthermore, if f is injective then 1.1 is an equality.
Prove these identities.

’Indeed, the knowing reader will note that this is needed to ensure that the above definition of cartesian product
yields a non-empty collection of elements whenever the underlying sets are non-empty.



Chapter 2

Basic Definitions and Examples

The first and fundamental concept of topology is that of a topological space. It took mathe-
maticians a good chunk of the 20th century to agree on our current standard definition: on one
hand, they sought to have a definition general enough to include an array of disparate “space-like”
mathematical concepts as instances of topological spaces; on the other, they wanted a definition
that was restrictive enough to still capture our intuitions about what “space” is. Having the actual
definition — which was only settled upon after decades of inquiry — simply presented to you, it
might appear awfully abstract and arbitrary. However, as we will argue throughout, such a notion
can be given a rich epistemic meaning, which can also help us understand how it relates to these
various notions of space.

Definition 2.0.1. Let X be a set. We say that a collection of subsets 7 € P(X) is a topology on
X if it satisfies the following conditions:

(O1) @ and X arein 7;i.e., ¥ €7 and X € 7.

(02) 7 is closed under arbitrary unions; i.e., if (U;);er is a collection of sets in 7, then | J,.; U; € 7.

el
(03) 7 is closed under finite intersections; i.e., if {Uy,...,U,} < 7, then (U n--- nU,) € T.

Given a set and a topology 7 on X, we say that the pair (X, 7) is a topological space. When no
confusion can arise, we will simply say that X is a topological space. We call the elements z € X
points and say that a set U € P(X) is open if U € 7. —

2.1 Topology and Logic: an intuition

As mentioned, to aid our intuitions, we will develop an informal epistemic interpretation of
topological spaces (X, 7). To do so, we must interpret such sets X and topologies 7 on X so that
the three conditions, (O1)-(03), are fulfilled:

(X) We think of X as a set of ‘epistemic worlds’.

(1) We think of 7 € P(X) as corresponding to the set of ‘verifiable propositions’, under a given
epistemological framework (i.e., a way to determine what can be verified /falsified).



Before checking that the three conditions are satisfied under this interpretation (i.e., that @, X are
verifiable propositions, and that verifiable propositions are closed under arbitrary unions and finite
intersections), let us be a bit more precise on what we mean by a ‘verifiable proposition’.
First, for a proposition P, we identify it with the set of epistemic worlds of X in which P is
true; that is,
P [P] ={x e X | P is true in the world x} < X.

This explains why 7 (being a set of subsets of X) can be thought of as a set of propositions. As
an interlude, note that under this identification disjunction corresponds to union; conjunction to
intersection; and negation to set-theoretical complement (recall the table in the introduction):

(Pv@Q) — [PvQ] ={xeX|PvQ istruein the world x}
={x e X | P is true in the world x} U {x € X | Q is true in the world x}

= [Flvlel;
(PAQ) — [PAQ] ={zxeX|PnAQ istrue in the world z} = [P] n [Q];
(—P) — [—P] ={xe X | =P is true in the world x} = X — [P].

In the infinitary case — with disjunctions of the form \/,.; P; — the exact same reasoning applies.
Thus, under our epistemic interpretation, condition (O2) becomes closure of verifiable proposi-
tions under arbitrary disjunctions, and (O3) becomes closure of verifiable propositions under finite
conjunctions.

Second, to explain what we mean by ‘verifiable’, consider the proposition

3-wsS) There is a non-white swan.
and its negation
(YWS) All swans are white.

Now, if we were to observe a black swan, we would verify (3I—WS) (and falsify (VIWS)). In
contrast, it does not seem a priori possible to verify the proposition (VW.S), or, equivalently, falsify
the proposition (3—W.S). No matter how many white swans we come across, we cannot be sure
what colour the next one will be — this is the (in)famous problem of induction. In our words,
(3—-WS) is verifiable, while (VIW.S) is not. Spelling it out, we say:



(ver) A proposition P is verifiable if and only if: whenever P is true at a world z (i.e., z € [P]), it
is possible to verify P at x (i.e., verify x € [P]).

And dually:

(fal) A proposition P is falsifiable if and only if: whenever P is false at a world = (i.e., x ¢ [P]),
it is possible to falsify P at x (i.e., falsify z € [P]).!

With this terminology defined, let us check that (O1)-(03) are satisfied under our epistemic inter-
pretation:

(O1) We first check that X € 7 is sensible given our interpretation, that is, that X corresponds to
a verifiable proposition. Since

T [T]={ze€ X | T is true in the world x} = X,

we find that the full set X corresponds to the proposition of logical truth. And since logical
truth can always be verified (our domain being X we know by default that x € X), X
corresponds to a verifiable proposition.

Next, we check that @ € 7, that is, that @ corresponds to a verifiable proposition. Since

1= [Ll] ={xe X | L is true in the world x} = @,

we find that the empty set @ corresponds to falsity. Since falsity is never true, it is vacuously
verifiable (note the clause ‘whenever P is true at a world z [...]” in the definition of (ver)).

(02) We have to check that verifiable propositions are closed under arbitrary disjunctions. Ac-
cordingly, suppose that (U;);e; S 7, where each U; corresponds to a verifiable proposition P;.
We will show that \/,.; P; is verifiable. So suppose \/,.; F; is true at a world x. Then there
must be some i € I such that P; is true at z. Now since P; is verifiable, it must be possible
to verify P; at . But then it is possible to verify \/,.; P; at x, namely by verifiying P; —
showing that \/,.; P; is verifiable, as required.

el
i€l
(08) We have to check that verifiable propositions are closed under finite conjunctions. Accordingly,
suppose that {Uy,...,U,} < 7. Then these correspond to verifiable propositions P, ..., P,.
We have to show that (P; A --- A P,) is verifiable. So suppose (P A --- A P,) is true at a
world z. Then each of the P;s are true, and since they all are verifiable, they are all possible

to verify at z. But then it is possible to verify (P} A --- A P,) at x, namely by verifying
Py,...,P,. Thus, (P, A --- A P,) is verifiable, as desired.

Example 2.1.1. Let us make the former more concrete by formalising the example of swans. If
our intuitions are to hold water, we should end up with a topological space.
We take the setting to consist of two possible worlds, namely

1. A world a in which all swans are white; and

2. a world b in which there is at least one non-white swan.

'Notice the similarity, almost to the extent of paraphrasing, to Karl Popper’s criterion of falsifiability.



Then X = {a,b}. We have four subsets of X:

e O, which corresponds to the verifiable proposition L, hence it is open.
e X, which corresponds to the verifiable proposition T, hence it is open.
o {a}, which corresponds to the proposition (VW S) which is not verifiable, hence it is not open.

o {b}, which corresponds to the verifiable proposition (3—WS), hence it is open.
Thus, we get the collection 7 = {&, X, {b}}, which is indeed a topology on X:
(0O1) We have that @ € 7 3 X.

(02) Clearly, any union of elements of 7 equals either @, X or {b}, which all are in 7.

(083) Clearly, any finite (or infinite) intersection of elements of 7 equals either @, X or {b}, which
all are in 7. 1

While we have argued how an epistemic interpretation can make sense of the requirements
(0O1)-(03), one can wonder whether the asymmetries in the definition of topological spaces can be
made more symmetric.

e Closure under arbitrary intersections: It might seem arbitrary that we only require
closure under finite intersections and not under arbitrary intersections (unlike how we require
closure under arbitrary unions). So suppose there are countably infinitely many swans, one
for each natural number n € w, and let P, be the proposition that swan number n is white.
Whilst it seems reasonable to say that each P, is verifiable (we can simply go check swan
number n), it appears less reasonable to say their conjunction

AL

new
is: we would have to check all infinitely many of the swans. In a nutshell, the salient distinction
is that while infinite disjunctions can be verified by finite information (one disjunct is enough),
infinite conjunctions cannot (all conjuncts are required). Notice that it is not that a topology
may not be closed under arbitrary intersections, but simply that we do not require it to be
so. If it is, we call it an Alexandroff topology.

e Closure under complements: Whilst in some cases both a proposition and its negation
might be verifiable, it seems equally reasonable that this does not always hold, as exemplified
by the case of swans above: (3—W) is reasonably said to be verifiable, while its negation
(VW S) is not.

Remark 2.1.1. Some of you might notice that there is a difference between countable unions and
arbitrary unions. While it is truly possible to verify a countable disjunction of finitely verifiable
proposition in finite amount of time by iterating the propositions, doing so for an arbitrary union
is not possible.

When taken the verifiability interpretation of topology seriously, there are methods of formal-
ising the meaning of verifiability and arbitrary unions in such a way that arbitrary disjunctions
represent the correct notion of verifiability relative to a particular verification method.

As the purpose of this series lecture to introduce basic topology through this interpretation, we
would not go into further details of this interpretation. Curious students might be interested in [1].

10



To summarize, (O1)-(03) seem to model closure conditions of verifiable propositions fairly well,
and throughout the project we will be using this epistemic interpretation to gain intuition for
various topological definitions, notions and concepts.

Logic Topology
Epistemic worlds/situations/models/objects satisfying a property | Points, x € X
Verifiable propositions Open sets, U € 7

2.2 (Sub)basis and Examples

We have seen how the definition of a topological space formalises our intuition of verifiable
propositions. However, once we have the abstract definition, we can use it in a number of different
settings. To get a feel for this, let us look at a few more examples of topological spaces.

Example 2.2.1. Let X = {x,y, z}, and consider the following subsets of P(X):

= {®7X’ {x}}v 2= {Qva {$}’ {‘Tay}}’ T3 = {Q’X7 {LE}, {y}}v and 74 = {Q’ {x}}

Then 71 and 79 are both topologies on X (check this); however, 73 is not, nor is 74. 73 — although
satisfying (O1) and (O3) — is not closed under unions:

{IB} €733 {y}7 but {.%'} Y {y} = {.T,y} ¢ 73.
And 74 fails to satisfy (O1) because X ¢ 74. —

Example 2.2.2. (Discrete and Indiscrete Topology)

Fix a set X. Then the collection {@&, X} satisfies the axioms of a topology; it is called the indiscrete
topology. Similarly, the collection P(X) also satisfies the axioms of a topology, and it is called the
discrete topology. By definition, all topologies contain (in terms of inclusion) the indiscrete topology,
and are contained in the discrete topology; that is, if 7 is a topology on X, then {&, X} € 7 € P(X).
_{

Example 2.2.3. (Kripke frames)
Let § = (W, R) be a reflexive and transitive Kripke frame. Then W can be given a topology, called
the Alexandroff topology on the preorder §, in the following way: U < W is open if and only if

Ve,ye W[(x e U and zRy) = yeU].

In other words, the open sets are precisely the R-upsets (check that this forms a topology). Notice
that this topology has the property that arbitrary intersections of opens are again open, hence the
name “Alexandroff topology”. —

In each of the previous examples, we defined the topological space (X, 7) by explicitly specifying
all open sets (i.e., all members of 7). Sometimes this is unwieldy, and it is more practical to only
specify a subcollection of 7 from which we can generate the entire topology:

Definition 2.2.4. (Basis and Subbasis) Let (X, 7) be a topological space. We say that B < 7 is a
basis for the topology T if for each U € 7 there is a collection (V;);e; < B such that

U=Uw

el

11



We say that S € 7 is a subbasis for the topology if the set of finite intersections of elements from &

{ ﬂ Vi MQS,Misﬁnite}Z

VeM

forms a basis for the topology.
Moreover, given a (sub)basis B < 7, we call members U € B (sub)basic opens. —

We can express the relationships between these concepts in various way: a topology is a basis
closed under arbitrary unions, and closing a subbasis under finite intersections one obtains a basis.?
We also note the following easy but important facts:

Proposition 2.2.5. Let X be a set and C' < P(X) a collection of sets. Then there is a (unique)
topology on X for which C is a subbasis.

Moreover, if (1) C covers X (i.e., Jyee U = X) and (2) C is closed under binary intersections,
then there is a (unique) topology on X for which C is a basis.?

Proof. For the former claim, first close C' under finite intersections, and then close the resulting
collection of sets under arbitrary unions. This will yield a topology (check this). Uniqueness is left
as an exercise.

For the latter, close C' under arbitrary unions. This will yield a topology (check this). Unique-
ness is left as an exercise. |

Remark 2.2.1. (Epistemic intuition: what is a (sub)basis?) Given a topological space (X, T), we
have seen that the topology 7 can be thought of as the set of verifiable propositions on the set of
epistemic worlds X.

What about B then, for B a basis for 77 Since B < 7, it too can be thought of as a set of
verifiable propositions. And since 7 is generated by closing B under arbitrary unions, we can think
of B as a basis of verifiable propositions from which all other verifiable propositions can be inferred
by a form of weakening, namely, by forming disjunctions of these basic propositions.

Similarly, for S a subbasis for 7, we can think of S as a subbasis of verifiable propositions from
which all other verifiable propositions can be generated by inference, through both strengthening
pieces of knowledge (conjunctions) and weakening (disjunctions).

Example 2.2.6. Let X = {a,b,c,d} where a,b, c,d are worlds described as follows:

All ravens are black | Some raven is non-black
All swans are white a b

Some swan is non-white | ¢ d

I.e., the world ¢, for instance, is a world in which all ravens are black and with some non-white
swan.

If we want to specify the verifiable propositions in this setting, instead of listing all of them, we
could simply say that our subbasic verifiable propositions are (3—W.S) and the analogous (3I—BR).

2We adopt the convention that the nullary intersection is the full set; i.e., Nyes V = X. And similarly that
Uyes V = 9, and correspondingly for propositions in logic: /\Peg P=Tand \Vp,P=L1

3However, it should be noted that a basis need not be closed under intersection.

“In fact, (2)’ can be weakened to: for all z € X, if z € (U1 n Uz) for some {U1,Us} < C, then there is some Us € C
such that z € Us € (U1 n Ua).

12



That is, all verifiable propositions are obtained by first taking (finite) conjunctions of these two
propositions, and then combining them in disjunctions. Doing so corresponds to having the subbasis

S = {{C7 d}7 {b? d}}a

which generates the topology
T= {@7 X, {Cv d}7 {bv d}v {d}a {ba Cy d}}

on X — exactly corresponding to the set of verifiable propositions (check this). —

Example 2.2.7. (Real Line Topology)
When first learning mathematics in school, one is often introduced to the real numbers R and
basic properties of these: they are ordered, and one can then look at the so-called “open intervals”,
typically written as

(x,y) ={zeR:2 <z <y} where z,y e R.

The choice of terminology is not a coincidence: the open intervals form a basis for the Fuclidean
topology on R (check this), in which a set U < R is open if and only if,

VzeUdz,yeU(z < z <y) and (z,y) < U. —

Example 2.2.8. (Cantor and Baire Spaces)

Consider the set 2% of infinite binary sequences. We call this the Cantor set. Given a finite sequence
s € 2<% and a finite or infinite sequence t € 2<% U 2“ we write s <t to mean that s is an initial
subsequence of t. Given any s € 2<“ we can consider the following set:

C(s) ={re2¥:s<uzx}.

Now consider the collection of the sets of the form {C(s) : s € 2<“}. You can check that this (1)
covers 2¢, and (2) is closed under binary intersections, and hence, defines a basis for a topology
(cf. Proposition 2.2.5) which we call the Cantor space.

Similarly, we topologise w® with a basis of sets C(s) = {z € w* : s<x}. We call this latter
space the Baire space. -

The concepts of basis and subbasis are thus instrumental when working with topological spaces.
In fact, when proving a topological statement, it is often enough to only consider basic opens. An
instance of this occurs when comparing topologies, which can be used to show that two topologies
are the same:

Definition 2.2.9. Let X be a set, and 7 and 7/ two topologies on this set. We say that 7 is a
coarser topology than 7 if 7 < 7/. Conversely, we say that 7/ is finer than 7. —

Lemma 2.2.10. Suppose X is a set with two topologies 7 and 7/, and B, and B, are bases for
these topologies, respectively. Then 7 € 7/ holds if and only if for all points z € X and all basic
T-open U € B, containing z, there is some basic 7/-open U’ € B, such that z € U’ < U.

13



Proof. (=) Let x € X and x € U € B, be arbitrary. We are then to find a U’ € B, such that
x €U < U. Since U € B,, we have that U € 7, so since 7 7/ by assumption, we also have that
U € 7. Now since 7’ is generated by B,/, U must be the union of some elements from B,,. And
since z € U, one of these must contain z, hence we have our U’ € B, such that x € U’ < U, as
required.

(<) Let U € 7 be arbitrary. We are then to show that U € 7/. For each x € U, fix some U, € B;
such that x € U, € U (such U, must exist, since otherwise U would not be the union of elements
from B;). By assumption, for each of these, there must be some U, € B,, such that x € U, < U,.

But then
velJucsJumcJU=1,
xeU xeU zeU
which shows that
v=|]JU.
zeU
But (|, Us) € 7' because each U, € 7/, hence U € 7/, as desired. [ ]

Example 2.2.11. Consider the sets of the form
(l,0) ={zeR |l <z}

These (1) cover R, and (2) are closed under binary intersections, hence form a basis for a topology
7r on R. Using the above proposition, we show that 7r & 7, where 75 is the Euclidean topology
on R.

(S) Let z,l € R be arbitrary such that x € ({,00). By the above proposition, it then suffices to
find an open interval (a,b) < R such that = € (a,b) < (I,0). However, this is easy: setting, e.g.,
a =1and b=x+ 1 does the job.

() By the above proposition, it suffices to find some z € R and open interval x € (a,b) € R
such that there is no [ € R for which z € (I,0) < (a,b). Again, this is easy: set, e.g.,, 2 =0,a = —1
and b = 1. Then z € (a,b), and for no [ € R, do we have (I, ) < (a,b). —

2.3 Generating New Topologies

Often we are interested in getting new topologies from existing ones. In this course we will
encounter several such procedures. The most elementary is to generate a topological space from a
subset of an already existing topological space:

Definition 2.3.1. Let (X, 7) be a topological space and S € X a subset. We denote by 7g the
subspace topology on S defined as

Ts :={UnS|Ucer}.

ILe., the 7g-open sets are our original T-open sets restricted to the subset S by means of intersection.
We then say that (S, 75) is a subspace of (X, 7) (you should check that (S, 7g), indeed, is a topological
space). =

Subspaces can in fact be given by only looking at a basis for the original space:
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Lemma 2.3.2. Let (X, 7) be a topological space with a basis B, and let S € X. Then the set
Bs ={UnS:Uce B}
is a basis for 7g.

Proof. To see this, let T' < S be open in the subspace topology. Then by definition, T' =V n S
for some V open in X. Hence, because B is a basis, we have that V = | J..; U;, where the U; € B.
Thus, putting this together

iel

T=VnS= (UUi)nS=U(UimS),

el iel
which was to show. [ |

Example 2.3.3. Consider R the reals, and look at Z with the subspace topology.> We claim that
the latter coincides with the discrete topology. Indeed, for any n € Z, we can consider the interval
1 1
——,n+2).

This is open in R, hence its intersection with Z — which is the singleton {n} — will be open in the
subspace topology on Z. Thus, every singleton is open in the subspace, which implies that every
subset is open (because topologies, in particular, are closed under arbitrary unions).

Question: is Q (as a subspace of R) also discrete? =

Also interesting is the following very frequent construction:

Definition 2.3.4. Let X and Y be topological spaces. We define a topology on the product X x Y,
called the product topology, as follows: a set Uy x Uy € X x Y is basic open if and only if Uy is
open in X and Uj is open in Y (you should check that this, indeed, defines a basis for a topology
on X x Y, cf. Proposition 2.2.5). —

With subspace and product topologies introduced, we prove the following proposition as a sanity
check:

Proposition 2.3.5. Suppose X and Y are topological spaces and that Sx € X and Sy € Y.
Then first constructing the product topology X x Y and then constructing the subspace topology
Sx X Sy € X x Y is the same as first constructing the subspace topologies Sx € X and Sy € Y
and then taking their product Sx x Sy (we say the constructions commute).

Proof. For the topology obtained by the former sequence of constructions, a basic open is of the
form (Ux x Uy) n (Sx x Sy) for Ux open in X and Uy open in Y. And for the topology obtained
by the latter sequence of constructions, a basic open is of the form (Ux n Sx) x (Uy n Sy) for Ux
open in X and Uy open in Y. So since

(UX X Uy) M (SX X Sy) = (UX M Sx) X (UY M Sy),

the bases are the same, hence the topologies are the same. |

SWhen nothing else is mentioned, we take the topology on the reals to be the Euclidean topology. This topology
is also known as the standard topology on R.
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Naturally, to define the product topology, one can also just take the bases to generate a new
basis:

Lemma 2.3.6. Let X and Y be topological spaces with bases By and By, respectively. Then
{Ux x Uy | Ux € Bx,Uy € By}

forms a basis for the product topology on X x Y.

Proof. Exercise. |

The product topology construction easily generalises to any finite product, and leads to many
usual spaces:

Example 2.3.7. Let R” be the set of n-dimensional tuples of reals. The n-dimensional topology
on this set is given by the basis of n-dimensional balls; i.e., the basis consists of all sets of the form

Be(@) = {1, 0> € R [ V{gr — @0 -+ (o — @a)? < 2}

where T = (x1,...,2,) € R” and £ > 0.

We can show that this topology is the same as the product topology of R with the usual
Euclidean topology, n many times. For simplicity we do this for n = 2, though the argument is
analogous for higher dimensions.

We will show equality of the topologies going inclusion by inclusion using Lemma 2.2.10. First,
let B.r(y1,y2) and {(x1,79) € Bu(y1,y2) be arbitrary, and set e := ¢/ — /(y1 — 21)2 + (y2 — 22)2.
Then ¢ > 0 and {(x1, z2) € B:(z1,22) € B (y1,y2), hence — for one inclusion — it suffices to find some
open intervals (a,b) and (¢, d) such that {z1,z2) € (a,b) x (¢,d) S Be(x1,x2) (because (a,b) x (¢,d)
is a basic open in the product topology, cf. the preceding lemma). So consider the following choice
of intervals:

e e e e
(331 —§,x1 +§) X ($2—§,$2+§)

Clearly, {x1,z2) € (x1 — 5,21 + §) X (22 — 5,22 + 5). Now let
£ 5 5 5
(21,22) € (21 — 501t 5) X (x9 — 502t 5)
be arbitrary; for this inclusion of topologies, it then suffices to show that {z1,z9) € B:(z1,z2).

Observe that |2; —z;| < £. Further, we have that the following inequality holds for all (21, zo) € R?
(and all {x1,12) € R?):

\/(21 —$1)2 + (ZQ —$2)2 < ’Zl —l'l’ + ’22 —.%'2‘.

Thus,

\/(zl —21)%2 4+ (22 —12)? <

which shows that (21, z0) € B:(x1,x2), as required.

Second, for the other inclusion of topologies, let (z1,x2) X (y1,y2) and {x,y) € (z1,z2) X (y1,Yy2)
be arbitrary. We can think of (x1,x2) X (y1,%2) as an (open) rectangle. Since the point (z,y) is in
this rectangle, we can consider an open ball around (x,y), that is small enough that it is entirely
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contained in the rectangle. For concreteness, we can set e := min{|z —z1|, |x — x2|, [y —v1|, |y —y2|},
the minimal distance from the point to the edges of the rectangle. Then

<3§',y> € BE(IE,y) < (xla :EZ) X (ylayQ)a
which proves the claim. —

So far we have only discussed the finite product topology, but there is, of course, also a product
topology simpliciter which generalises to cover the infinite case as well. The reason we discussed
the finite product topology separately, is that the product topology in general is quite complex, as
we will now see:

Definition 2.3.8. Let (X;);c; be a collection of topological spaces. We define a topology on their
product [ [,.; X; by saying that a set
U=JJuic]]x

el iel

iel

is basic open if (1) all the U; € X; are open (in X;) and (2) for all but finitely many coordinates,
do we have U; = X; (you should check that this, indeed, defines a basis for a topology on [ [,.; Xi,
cf. Proposition 2.2.5). Equivalently, we say that a set U is a subbasic open if it is basic open and
on all but one position ¢ it is equal to X;. -

Notice that this definition does not reduce down to a set being open if it is the product of
infinitely many open sets. This condition is crucial to ensure that many properties are preserved
under products, as we will see later.

Example 2.3.9. Recall the Cantor space 2¢. We can prove that the topology on this set is the
product topology of w many copies of 2 = {0,1}, the two element set with the discrete topology.
To do so, we, as usual, go inclusion by inclusion using Lemma 2.2.10.

Accordingly, first, suppose (zp)new € U for some basic open U = [],., Un in the product
topology. By definition, we then know that for all but finitely many coordinates, U, = {0,1}.
Hence there must be some greatest natural number m such that U,, # {0, 1} (or in case U,, = {0,1}
for all n € w, we set m := 0). Then (z;)i<m < (2;)icw and (x;)icw € C((x;)i<m) S U, which shows
the first inclusion.

Second, for the other inclusion, it suffices to show that any C(s) is a basic open in the product
topology. Since s is a finite sequence it is of the form (z;);<m, for some m € w and xq, . .., Z;,, hence
we get that

C(s) = C((i)icm) = {wo} x - x {zm} x [ [{0,1},
n>m
which, indeed, is a basic open in the product topology. This shows the other inclusion, and thus,
concludes the proof of the two topologies coinciding. -

We now take a look at the topological sum:

Definition 2.3.10. Let (X;);er be a collection of topological spaces. We define the topological
sum of this collection to be their disjoint union | |,.; X; endowed with the following topology:
U < | |,c; Xi is open if and only if for each i € I, the following set is open in X;:

U(i) ={a€ X;| (a,i) e U}.

(As always, you should check that this actually does define a topological space). —
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One can prove that a collection of bases for each X; induces a basis for their topological sum:

Lemma 2.3.11. Let (X;);e; be a collection of topological spaces, and let (B;);c; be a collection of
bases for each of these spaces. Then the set

B= {ZEUXi|Z(i)EBi}

el
is a basis for the topological sum of the spaces.

Proof. Exercise. |

Example 2.3.12. Suppose (F;)ier is a collection of transitive and reflexive Kripke frames. Then
their disjoint union is also a transitive and reflexive Kripke frame, hence it admits an Alexandroff
topology as per Example 2.2.3. We can show that the topological space obtained in this way is
precisely the topological sum of the Alexandroff spaces (§;)icr- -

2.4 Closed sets, Neighbourhoods, Closure and Interior Operators

Having seen some examples of topological spaces and ways of constructing them, we close off
the chapter by covering some important notions related to topological spaces, beginning with the
notion of a closed set:

Definition 2.4.1. Let (X, 7) be a topological space. We say that a set U € P(X) is closed if its
complement is open; i.e., if (X —U) € 7. —

An immediate consequence of this definition and our definition of a topological space is the
following;:

Proposition 2.4.2. Let (X, 7) be a topological space. Then:
(C1) X and @ are closed sets.

(C2) Arbitrary intersections of closed sets are closed; i.e., if (U;);er is a collection of closed sets,
then (),c; U; is a closed set.

(C3) Finite unions of closed sets are closed; i.e., if Uy, ..., U, are closed, then so is (U; u--- U U,).

Proof. Follows from the set-theoretical complement operator taking unions to intersections (and
vice versa). [

In fact, conditions (C1)-(C3) work as an equivalent definition of a topological space: specifying
a collection of subsets satisfying (C1)-(C3) (which we call closed), determines a collection of open
sets — namely the complements of the closed ones — which satisfies (01)-(03).

Remark 2.4.1. (Epistemic intuition: what are the closed sets?) We know that, given a topological
space (X, 7), members of 7 are called open and that these can be thought of as verifiable proposi-
tions. We also now know that the complement (X — U) of an open set U € 7 is called closed and
corresponds to the negation of a verifiable proposition. But, as previously argued, the negation of
a verifiable proposition is not always verifiable (recall (3—W.S) and its negation (VW.S)). However,
the negation of a verifiable proposition is always falsifiable; e.g., to falsify (VW 5), it suffices to show
the existence of a, say, black swan. That is, we can think of closed sets as falsifiable propositions.
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Remark 2.4.2. The reader familiar with contemporary service work will be aware of the notion of
a “clopen”. Just as in this case, in topology the concept of being closed and open are not mutually
exclusive nor exhaustive. One can have sets, just like the whole space and the empty set, which
are both open and closed — these are often shortened to clopen sets. And one can have sets which
are neither (see Exercise 2.2).

Our intuition of open sets as verifiable propositions and closed sets as falsifiable propositions
can help us make sense of this: The proposition

It is raining outside.

can reasonably be said to be both verifiable and falsifiable (I can simply go out and check); while
the proposition

John F. Kennedy’s last thought was “What is the One True Logic?”

neither seems verifiable nor falsifiable. —

Verifiable (open) | Falsifiable (closed)

All swans are white X
Some swan is non-white X
It is raining outside X X

JFK’s last thought was “What is the OTL?”

Recall that all opens of a subspace S of X are of the form (U n S) for U some open in X. An
analogous result holds for closed sets in subspace topologies:

Lemma 2.4.3. Suppose (S, 7g) is a subspace of (X, 7). Then a set U € P(S) is closed in S if and
only if there is some closed set V in X (i.e., (X — V) e 1) such that U =V n S.

Proof. Exercise. |

Definition 2.4.4. Let (X, 7) be a topological space and S € X arbitrary. We denote by cl(S) or
S the closure of S, the smallest closed set K such that S € K; that is, cl(S) is the intersection of
all closed sets containing S. We denote by int(S) the interior of S, the largest open set K such
that K < S; that is, int(S) is the union of all open sets contained in S. —

Remark 2.4.3. Using this definition, we have that a set S is closed if and only if S = S, and open
if and only if S = int(S). We call the operators

int : P(X) — P(X),S — int(S)

and
c:P(X)—P(X),S—cS)

the topological interior and topological closure, respectively. As the reader will find in the exercises,
interior and closure operators provide an alternative, but equivalent, form of describing topologies.
_|

The last notion we will introduce in this chapter is that of a neighbourhood:
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Definition 2.4.5. Given a topological space (X,7) and a point z € X, we say that V € X is a
neighbourhood of x if and only if there is an open set U such that ze U 2 V.

Moreover, observe that if a neighbourhood V' of a point x is open, the definition simplifies: V'
is an open neighbourhood of a point  if and only if 2 € V and V is open.® —

Remark 2.4.4. (Epistemic intuition: what is an (open) neighbourhood?) The open neighbourhoods
of a point = have a neat epistemic interpretation: they are precisely the verifiable propositions
true at world z (i.e., the propositions that in fact can be verified at = — assuming that only
true propositions can be verified). One can also come up with an epistemic interpretation of a
neighbourhood simpliciter, but it seems a rather artificial concept; all intuitions, including our
epistemic one, have their shortcomings. —

Using the definition of an open neighbourhood, we can give another equivalent definition of the
closure of a set, which is particularly useful when proving a set is open or closed:

Proposition 2.4.6. Suppose X is a topological space and .S € X. Then the following are equivalent
for a point z € X:

o 1z is in the closure of S; i.e., x € cl(S5).
o All open neighbourhoods U of x have non-empty intersection with S; i.e., U n S # @.

Proof. (=) Suppose for contraposition that there is some open neighbourhood U of x such that
UnS =@. Then (X —U) is closed, S € (X —U) and = ¢ (X — U). So since cl(S) equals the
intersection of all closed sets containing S — which includes the set (X —U) — we find that x ¢ cl(.S),
as required.

(<) Suppose for contraposition that x ¢ ¢l(S). Then since cl(S) is closed, its complement
(X —cl(9)) is an open set containing z, i.e., an open neigbourhood of x. And clearly, (X —cl(S)) n

S = @, which proves the claim. |
Logic Topology
Epistemic worlds/situations/models/objects satisfying a property | Points, z € X
Verifiable propositions Open sets, U € T
Falsifiable propositions Closed sets, U® e 7
Verifiable propositions true at x Open neighbourhoods U of x
(Sub)basic verifiable propositions (Sub)basic opens

2.5 Exercises
Exercise 2.1. Let (7;)c; be a collection of topologies on a set X.
(a) Is their intersection (),.; 7 (necessarily) a topology on X7

(b) Is their union [ J,.; 7; (necessarily) a topology on X7

5Tn the literature, you will sometimes find that a neighbourhood simpliciter already is required to be open. We
do not adopt that convention, but simply speak of ‘open neighbourhoods’ when needed.
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(c) Show that there is a greatest topology 7 on X such that 7 < 7; for all i € I. (with “greatest”
we mean that if 7/ is some other topology such that 7" < 7; for all 4 € I, then 7/ < 7)

(d) Show that there is a least topology 7 on X such that 7; € 7 for all i € I.
Now let X = {x,y,z}, 10 = {9, X, {z},{z,y}} and 7| = {2, X, {z}, {y, 2}}.
(e) Find the greatest topology 7 on X such that 7 € 79 and 7 < 7.
(f) Find the least topology 7 on X such that 7o € 7 and 7, < 7.
Exercise 2.2. Consider the space (R, Tgyc), with its Euclidean topology.
e Give an example of a set which is neither open nor closed.
o Show that the intervals of the form (x,y) where x,y € Q form a basis for this topology.
e Show that QQ is a countable union of closed sets.

Exercise 2.3. Let (S,7g) be a subspace of (X,7), and T' < S. Show that the topology the set T
inherits as a subspace of (S5, 7g) is the same as the topology it inherits as a subspace of (X, 7).

Exercise 2.4. Prove Lemma 2.3.6.
Exercise 2.5. Prove Lemma 2.3.11.
Exercise 2.6. Prove Lemma 2.4.3.

Definition 2.5.1. Let T € w=¥ be a collection of finite sequences of natural numbers. We say
that T is a tree if whenever s € T and t <t s, thent e T'.

Given a tree T' we write [T'] for the set of all branches, i.e. the infinite sequences all of whose
finite approximations belong to T

[T] ={sew”:¥Yn,sineT}

Exercise 2.7. Let A € w“ be a set of natural number sequences. We write T'(A) for the tree of
initial sequences, that is:
T(A) ={sew=¥:s<}

1. Show that whenever T is a tree, [T] is a closed subset.

2. Show that the assignment A — [T'(A)] is the topological closure in the Baire space.
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Chapter 3

Continuous Maps

Having acquainted ourselves with the basic objects, notions and constructions of topology, we
proceed to a central, but elusive, mathematical notion: continuity. Back when the main mathe-
matical concerns about continuity were geometrically rich settings, such as the real line, this could
be captured by the following intuition:

A continuous function is one which has ‘no gaps’; it can be drawn using a pencil without lifting it.
Or putting it in a slightly different way:

Points close to each other in the domain of f, are mapped to points close to each other in the
codomain of f.

However, rigorously formalising this notion was one of the greatest challenges of 19th century
mathematics. Under Richard Dedekind’s formalisation of Euclidean space, continuity is defined by
the “e-0”-definition (see exercises). Historically, this lead to the first real generalisation of Euclidean
space: so-called metric spaces. For the reader familiar with metric spaces, the topological definition
of continuity comes as no surprise: on metric spaces, it is easily seen to be equivalent to the usual
metric definition but with the advantage of not referring to any metric. However, for the reader
unfamiliar with metric spaces, it probably appears shockingly different from our basic intuition of
continuity:

Definition 3.0.1. Let (X, 7x) and (Y, 7y) be topological spaces, and f: X — Y a map between
them. We say that f is continuous if for every open U in Y, its preimage f~'[U] = {xr e X | f(x) €
U} is open in X; that is,

VUCYUerny — fHU]ex).

Strictly speaking, we should say that “f is continuous relative to the topologies Tx and 7v”: had we
equipped X and Y with other topologies than 7x and 7y, the condition that preimages of opens
are open might not have been met any longer. Nonetheless, in almost all cases, we go for brevity
and omit explicit mention of the topologies. -

3.1 Understanding Topological Continuity

As you have seen in lecture, through the following proposition, we can, fortunately, reconcile
this seemingly bizarre definition with our basic intuition of continuity:
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Proposition 3.1.1. Let f: X — Y be a map between topological spaces. Then f is continuous if
and only if

() for every S < X: f[S] FIS], ie., if z € clx(S) then f(x) € cly (f[S]).

Remark 3.1.1. Before proving the proposition, let us recall from lecture why this equivalent ()
definition of continuity agrees with our intuition. We make the following interpretation:

Given a topological space (X, 7), S € X and z € X, we say that z is close to S if z is in the
closure of S, i.e., z € cl(S).

Under this interpretation,! the proposition amounts to the following: f is continuous if and only if
for every S € X, f maps points close to S to points close to f[S].

Thus, this otherwise seemingly bizarre definition — upon further scrutiny — concurs rather well with
our informal idea of continuity. —

Proof (of Proposition 3.1.1). (=) Suppose f is continuous, and let S € X and x € clx(S) be
arbitrary. We are then to show that f(x) € cly (f[S]). To show so, let V'S Y be an arbitrary open
neighbourhood of f(z). By Proposition 2.4.6, it then suffices to show that V' n f[S] # @. But since
(i) f(z) e V, (ii) V is open in Y, and (iii) f, by assumption, is continuous, we get that f~1[V] is
an open neighbourhood of z. So because x € clx (S), we get by Proposition 2.4.6 that there is some
ye (f71[V]nS). Thus, f(y) e (V n f[S]), as required.

(<) Suppose V € Y is open in Y. We are then to show that f~![V] is open in X. We have
that the complement (Y — V) is closed in Y, and since obviously f~![Y — V] € X, we can use (x)
for S = f71[Y — V] to get that

Y=V e Ty -V eV -V =Y V.
Thus by taking preimages, we get that
Y =Vie [ =il e sy - v,

which implies that
Y =V]= 1y —vy,

hence f~[Y — V] is closed in X, and thus the complement
V=X -y -v)
is open in X, as desired. |

One might ask whether we also have an epistemic understanding of continuity.

L And this interpretation does indeed make a lot of sense. For instance, in R with the standard topology, we get
that z is close to (0,1) if and only if z € [0,1] = {reR|0<r < 1}.
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Remark 3.1.2. (Epistemic intuition: what is continuity?)

Say that X and Y are two topological spaces, understood as epistemic domains. As we specified
them, epistemic domains consist of worlds, an epistemic framework, and propositions. But it might
be that we wish to compare two epistemic domains: for instance, we want to compare the knowledge
about topology we have in English and in Polish.? In order to do that, we need a form of translation
between the propositions. Since we identified propositions with sets of worlds, we can just as well
think of such a translation as a map f: X —» Y.

Now it is an often remarked fact that translations can sometimes be lossy — some facts that
were known can be lost, since there is no way to express them unambiguously in the new language.
On the other hand, if this translation is to be sound, we would expect that knowledge should be
stable under translation: if we could known that y € U for U € Y and y € Y, then whatever U
corresponds to under the translation (i.e., f~![U]) we should have that we could already decide
whether € f~!'[U] — in short, translations do not increase knowledge. This is precisely the
criterion of continuity we have. -

Besides from the definitions of continuity just considered, there are many other equivalent ones.
The following gathers some of the most common and useful of these:

Proposition 3.1.2. Let f: X — Y be a map between topological spaces and By a (sub)basis for
the topology on Y. Then the following are equivalent:

1. f is continuous.
2. For every (sub)basic open U € By, its preimage f~![U] is open in X.
3. For every closed set U in Y, its preimage f~![U] is closed in X.

4. For every x € X, whenever V C Y is a (basic) open neighbourhood of f(z), there is an open
neighbourhood U € X of z such that f[U] € V.

Proof. We show that 1. < 2., and the leave the rest as an exercise.
Clearly, 1. implies 2., so suppose 2. holds for By a basis, and let V' € Y be an arbitrary open
in Y. We are then to show that f~![V] is open in X. By assumption, (a) there are (V;);er S By

such that
V=V
i€l
and (b) each
Fvi

is open in X. So using that preimages commute with unions, we get that

U%] = Uf_l[%]a

iel iel

FvI=5

which suffices because topologies are closed under unions.

2This is a reference to the fact that the Polish school of topology was extremely influential, and continues to this
day to have a hold on conjectures and directions for some areas of general topology.
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Now suppose that 2. holds for By a subbasis. Then, by definition, the set of finite intersections
of By is a basis. Thus, using what was just proven, it suffices to show that

f_l[‘/l a) mVn]

is open for any n € w, {V1,...,V,} € By. Now, using that preimages also commute with intersec-
tions, we get that
FrVin - aVal = iVl o-n fH VAL

which suffices because topologies are closed under finite intersections. |

Remark 3.1.3. f is said to be continuous at a point x € X if condition 4. holds for z.
You should show that under the “close to”-interpretation of Remark 3.1.1, we have that f is
continuous at a point z € X if and only if

(%) 10car for every S € X, if z is close to S then f(z) is close to f[S]. =

To get some hands-on experience with the topological notion of continuity, let us look at some
specific examples — starting with checking that the quadratic function « — 22, indeed, is continuous:

Example 3.1.3. Consider the function
f:R>R

given by setting
fla) =2®

for all x € R. We check that this is a continuous function (relative to the Euclidean topology on
both copies of R). By 2. of the preceding proposition, it suffices to show that

f(a,b)]

is open for all open intervals (a,b) < R. However, this is clearly the case, since

(\/W’X/W)U(_\/mv_\/m) f0<a<b

fH(a,b)] ={zxeR|a<a2®<b} =1 (0,4/]]) U (—=+/]0],0) ifa<0<b
(%] otherwise
which, as a union of open intervals, is open in the Euclidean topology on R. —

Even if the reader (hopefully) finds that we have given sufficient reason for why and how the
topological definition of continuity formalises our basic intuitions about continuity, it is instructive
to consider another kind of maps whose definition might—but only at first sight—appear like a
more obvious candidate for a topological definition of continuity.

Definition 3.1.4. Let (X, 7x) and (Y, 7y) be topological spaces, and f : X — Y a map between
them. We say that f is open if for every open U in X its image f[U] = {f(z) € Y | x € U} is open
in Y; that is,

VU< X(Uerx = f[U]ery).

As with the definition of continuity, strictly speaking, we should say that “f is open relative to the
topologies Tx and Ty, but, for brevity, we will typically omit such mention. —
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Although the concept of an open map is useful, it is not — as the following example shows —
what captures our intuitions about continuity. Making use of our epistemic intuition, this actually
becomes quite clear:

Remark 3.1.4. (Epistemic intuition: What are open maps?) We have said that maps f: X - Y
between epistemic domains are translations, and that continuous maps are translations where “no
knowledge is gained”. Open maps are, on the other hand, translations where “no knowledge is
lost”. Indeed, if U is verifiable in X, and f is such a translation, then since no knowledge is lost, we
should be able to verify f[U]; and conversely, if we have an open map, it is clear that no knowledge
will be lost.

Intuitively then, it seems plausible that amongst translations, some will have lost knowledge —
some things will be lost in translation — though the class of such translations is certainly interesting.
_|

If the former intuition is to hold, we should be able to find some examples of continuous maps
which are not open, and vice-versa. Let us see an instance of the former:

Example 3.1.5. Consider the function

f:R->R
given by setting
x ifx<0
€Tr) =
/(@) {0 otherwise

for all x € X. Then f is continuous but not open. Indeed, we find that, e.g.,
FI-L1)] = feeR| -1 <o <0} = (—1,0]

which is not open (check this), hence f is not open. To see that it is continuous, observe that for
any open interval (a,b), we have that
(a,b) ifa<b<0
fa,b)] =< (a,0) ifa<0<b,

%)} otherwise

which, as a union of open intervals, is open. -

We have seen how the topological definition of continuity, as a special case, agrees with our
geometric intuition. But since the definition of topological spaces go far beyond the standard
topology on R, so must the topological definition of continuity. To see an instance of this, let us
look at the reflexive and transitive Kripke frames with their Alexandroff topologies. What are the
continuous maps between such spaces?

Definition 3.1.6. Let § = (W, R) and § = (W', R’) be two Kripke frames. We say that a map
[ W — W satisfies

o the forth condition if whenever xRy, we also have that f(x)R’'f(y); and

o the back condition if whenever f(z)R'y’, there is some y € W such that xRy and f(y) = y'.—

26



Proposition 3.1.7. Let § = (W,R) and § = (W', R’) be two reflecive and transitive Kripke
frames, equipped with the Alexandroff topology, and f : W — W'’ a map between them. Then:

1. f satisfies the forth condition if and only if f is continuous.
2. f satisfies the back condition if and only if f is open.

Proof. (1) First, suppose that f satisfies the forth condition, and assume that U’ < W’ is an
R'-upset of W’. We will show that f~![U’] is an R-upset. Indeed, assume that z € f~'[U’] and
rRy; we are then to show that y € f~![U’]. By the forth condition, we get f(z)R'f(y), so since
f(x) e U’, we have that f(y) € U’, hence y € f~}[U’] - as required.

Conversely, assume that f is continuous and zRy. Consider the R’-upset:

tf(x)={eW : f(x)R'7}.

Then look at f~1[1 f(z)]. Because the map is continuous, this is an R-upset. Sosince z € f~1[1f(x)]
(by reflexivity of (W', R")) and zRy, we have that y € f~![1f(x)]. Hence f(y) € 1f(x), and so

F() R f(y).

(2) Now assume that f satisfies the back condition. Let U € W be an R-upset; we will show
that f[U] is an R'-upset. Indeed, if f(z) € f[U], and f(z)R'y’, we get by the back condition
that there is some y € W such that xRy and f(y) = v'; since U is an upset, we have y € U, so
y' = f(y) € f[U] — as required.

Conversely, if f is an open map, assume that f(x)R'y’. Because fz is an R-upset, its image
f[1x] must be an R'-upset, so since f(x) € f[1z] by reflexivity of (W, R), we have that 3’ € f[1z].
But that means that there is some y € W such that xRy and f(y) = y’. This shows the back
condition. |

Having Proposition 3.1.7 in mind, it is easy to give examples of continuous maps which are not
open, and vice-versa. Consider for instance Figure 3.1.

Figure 3.1: Continuous map, but not open; open map but not continuous
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3.2 Homeomorphisms, Embeddings and Quotient Maps

Combining the notion of an open and a continuous map, we can define the correct notion of an
“isomorphism” for topological spaces, denoted a homeomorphism. This principle will be seen very
often in these notes: whenever we have two spaces which are homeomorphic, and one of them has
a specific property, we will be able to transfer that property along the homeomorphism.

Definition 3.2.1. Let f: X — Y be a map between topological spaces. We say that f is

o a quotient map if (i) it is surjective and (ii) for all U < Y, U is open in Y if and only if
f~YU) is open in X;

e a homeomorphism if it is bijective, continuous and open; and
e a (topological) embedding if the map
X — flX]

obtained by restricting the codomain of f to its image is a homeomorphism (where f[X] € Y
is endowed with the subspace topology). —

As you will show in your first assignment, there are other elegant equivalent definitions of
homeomorphisms. Alas, this is not the case when it comes to quotient maps and embeddings, but
— as the lemma following the next definition shows — the situation is not all bad.

Definition 3.2.2. Let f : X — Y be a map between topological spaces. We say that f is closed
if for every closed U in X, its image f[U]| = {f(z) e Y | x € U} is closed in Y. —

Lemma 3.2.3. Let f: X — Y be a map between topological spaces. Then the following all hold:

(0.q) f is a quotient map if and only if (i) f is surjective and (ii’) for all U € Y, U is closed in YV
if and only if f~1(U) is closed in X.

If f is a quotient map, then f is surjective and continuous.

If f is surjective, continuous and open, then f is a quotient map.
If f is surjective, continuous and closed, then f is a quotient map.
If f is an embedding, then f is injective and continuous.

If f is injective, continuous and open, then f is an embedding.

If f is injective, continuous and closed, then f is an embedding.

Proof. (0.q) to (3.q) all follow almost directly by definition (you should still check these) and (3.e)
matches one of the exercises of your first assignemnt, so we only cover (1.e) and (2.e) as an aid in
unpacking the definition of an embedding.
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(1.e) Suppose f is an embedding. Injectivity follows by the restriction
X — f[X]

being a homeomorphism, hence in particular injective. For continuity, suppose V € Y is open
in Y. Then V n f[X] is open in the subspace topology on f[X], hence, since homeomorphisms
are, in particular, continuous, we find that

IV fX])

is open in X. But
FV A fIXD = £V

so the claim has been proven.

(2.e) Suppose f is injective, continuous and open. Then
X — f[X]

is also surjective, hence bijective. Moreover, f’ is continuous since for any open V in Y, we
have that

FV vl =r1vl,
which is open in X. Lastly, f’ is open because for any open U in X,
f'lU] = flU] = f[U] n f1X],

which is open in the subspace topology on f[X] because f[U] is open in X by f being an
open map. Thus, f': X — f[X] is a homeomorphism, hence f is an embedding.

Remark 3.2.1. Statements (2.q) (and (3.q)) of the preceding lemma are only partial converses to
(1.q). This is for good reason: there are quotient maps which are not open (and quotient maps
which are not closed). And similarly, as regards embeddings and the statements (1.e), (2.e), (3.e).
_|

Example 3.2.4. Recall the Cantor space 2. Then we can construct a topological embedding from
this space to [0, 1] (as a subspace of R) through the map taking an infinite binary sequence (a;);ew

to:
& 2a,
Z 3n+1‘

n=0

You can check that this is indeed a topological embedding. Additionally, you can see that the
corresponding subset of R is not open in R. —

Quotient maps are of further interest because their definition also works as a recipe for con-
structing a topology:



Definition 3.2.5. Let X be a topological space, ~ an equivalence class on X, and
qg: X —> X/~

the canonical map projecting each element to its equivalence class; i.e.,
q:z—[z]..

We then define the quotient topology on X/~ as follows: U < X/~ is open if ¢~![U] is open in
X (you should check that (a) this, indeed, defines a topology on X /~, and (b) ¢ does become a
quotient map when X/~ is equipped with this topology). —

An often repeated adage is that quotienting “is like gluing”. Let us see a few examples to get
an understanding of this:

Example 3.2.6. If the previous example made you reconsider your choices for project season, there
are much simpler examples of quotient topologies you can think of. Consider the unit interval with
the subspace topology: I = [0,1] € R. Define a relation on this space by saying that

T~y if and only if z=yorx=0y=1lorxz=1,y=0.

It is not too difficult to see that this is an equivalence relation. Consider the quotient [0,1]/~. If
quotienting is like gluing, this space — having glued the interval endpoints 0 and 1 together — should
give you a circle in R%2. And topologically that is precisely what happens: [0, 1]/~ is homeomorphic
to, e.g., the circle

Sti={(z,y) e R?* | 2? + ¢y = 1} = R?

equipped with the subspace topology. —

Example 3.2.7. Consider 12 = [0,1] x [0,1]. This can be visualised as a unit square. Consider
the following equivalence relation:

(ac,y) ~ (a:',y’) Aff (ZL’,y) = (ZL'/,y,) or (l‘ =1-2a'¢€ {Oa 1}7y =1- y/)'

This can be visualised as in Figure 3.2.

/

0 1
Figure 3.2: Gluing of Mo6bius Strip

Now consider the quotient of I? through ~. In our ordinary 3D space this corresponds to taking
a rectangle, folding half of it and gluing the edges — obtaining a so-called Mdbius Strip. If we look
at the topology on I? obtained canonically (i.e., by taking the subspace topology on [0,1] < R and
the product topology on these), then the result of the quotient topology is precisely the topological
structure one would desire from such a geometric object.? -

3The Mébius Strip and the torus (i.e., the “surface of a doughnut”) are plausibly the most commonly used examples
of topological spaces within popular math education. In this (wonderful) 3BluelBrown video, you can see an instance
of how these topological spaces actually are used in mathematics.
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https://www.youtube.com/watch?v=AmgkSdhK4K8

3.3 Exercises

Exercise 3.1. Prove the rest of Proposition 3.1.2.

Exercise 3.2. Consider the Baire space defined in Example 2.2.8. Show that a function f :w* —
w* is continuous if and only if whenever s <1 f(x), there is ¢t <z such that for all y, ¢t <y implies

s< f(y)-

Exercise 3.3. (Continuous maps preserve the structure of topological spaces) Given continuous
maps f: A— B,g: B — C show that

e Composition: go f is continuous; and
o Identity: Id: A — A, a— a is continuous.

Exercise 3.4. (Topological spaces are stretchy) Prove that (—1,1) and R are homeomorphic. Use
your homeomorphism to show that for any real numbers a and b, the interval (a, b) is homeomorphic
to the real line.

Remark 3.3.1. You now have sufficient topological knowledge to understand the jokes made about
topologists, doughnuts and coffee mugs. Topology is the study of spaces up to homeomorphism,
which means that spaces which can be obtained by this sort of “stretching” behaviour are homeo-
morphic. But what out! There can be very wild homeomorphisms between spaces.

Exercise 3.5. (“Being homeomorphic to” forms an equivalence class)

(Re.) Show that for any topological space X, there is a homeomorphism f: X — X.

(Sy.) Suppose f : X — Y is a homeomorphism. Show that the inverse f~! : ¥ — X is a
homeomorphism as well.

(Tr.) Suppose f: X — Y,g:Y — Z are homeomorphisms. Show that their composition g o f :
X — Z is a homeomorphism as well.

Exercise 3.6. Show that the following are equivalent for a continuous function f : X — Y between
topological spaces:

1. f is a homeomorphism;
2. There is a continuous function g : Y — X such that fog =1idy, and go f = idx.

Exercise 3.7. (Subspaces) Let X be a topological space. Suppose that U € X is an open subset.
Show that:

1. The inclusion of the topological subspace U into X is an interior map.

2. Is the same true if U is arbitrary, i.e., not assumed to be open? What properties does the
inclusion have?

Exercise 3.8. Let R be the set of reals with the Euclidean topology. Show that a function
f : R — R is continuous at a point a if and only if it is e-§ continuous at that point: for all real
numbers € > 0, there exists some real § > 0 such that for all z € R,

w—a] <6 = |f(x) - f(a)] <.

Hint: Use the so-called triangle inequality, which holds of the absolute value: |x—z| < |z—y|+|y—z|.
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Exercise 3.9. (Quotient maps) Let X be a topological space and ~ an equivalence relation.
1. Show that the map ¢ : X — X/~ is a quotient map.
2. Give an example of a continuous surjection which is not a quotient map.

3. Given another topological space Y, show that for every continuous map f : X — Y, there
exists a unique map f : X/~ — Y such that the following diagram commutes:

Exercise 3.10. (Universality of product) Consider a family (X;);c; of topological spaces. Show
that:

1. The projection maps p; : [ [,c; Xi — X; given by sending (z;);e; — x; are continuous;

2. The topology on the set theoretic product is the coarsest making the projections continuous:
if 7/ is some topology on [ [,.; X; such that all the maps p; are continuous, then 7’ contains
all open sets from the product topology.

Exercise 3.11. (Very Tricky!) Show that there exists a surjective continuous function f : [0, 1] —
[0,1] x [0,1]. Hint: Define this function in successive stages, such that in the limit it covers the
whole space.
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Chapter 4

Separation Axioms

We have now encountered all the main concepts we need to discuss some properly topological
properties. One of the most relevant such properties is “separation”. This is in some sense a com-
plementary discussion to the one we have had so far. So far we have only talked about recognising
that certain points x € X belong to certain subsets U € X — open subsets, understood as intervals,
verifiable propositions, or some other such structure. However, one can ask whether not only our
epistemic structure allows us to talk about knowable facts, but whether we can actually use this
epistemic structure to determine things about the possible worlds.

To motivate the technical developments, we will begin by introducing an informal collection of
ideas, motivated epistemically, which will eventually lead us to the notion of a filter.

4.1 Epistemic Theories

Suppose we are given a set of models X, a set of verifiable propositions 7 and a pair of models
x,y € X, can we verify whether or not z is identical to y?

In non-epistemic logic, the answer is yes - we simply find a property that holds for x and does
not hold for y. But often in mathematics, this is not as easy as it seems. Consider the famous
continuum hypothesis N; L 2% We can prove that there is no proof of that equality within ZFC.
That is, there is no pair of verifiable propositions U and V such that X; < U, 2% < V and
U nV = @. That is, the two models cannot be separated.

Classically, for every model x and every proposition ¢, one can show that either z = @ or x H ¢.
But in intuitionistic logic, it is not always the case that one can prove either x = ¢ or = ¥ . Recall
that we can prove that = does not satisfy U only if = € int (X\U).

Topology provides us with a rich theory for exploring such situations.

4.2 Filter Bases and Extension of Filters

The first notion that we will need moving forward is some concept which allows us to capture
the idea laid above of being a “definitive theory”. We can see by the way we defined it that this
also has a in some sense something to do with “approaching a point”, or in more technical-sounding
terms “convergence”. One — of multiple possible — ways that this can be formalised is using the
idea of a “filter base” and associatedly, a "filter”:
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Definition 4.2.1. Let X be a set. We say that a collection of subsets F' € P(X) — {J} is a filter
base if it satisfies the following:

J XEF;
e If A, Be Fthen AnBeF.

We say that a given filter base is a filter if it is upwards closed: whenever A € F and A < B then
BePF.

Example 4.2.2. Consider the set {a,b,c,d}. Then the following collection defines a filter base
(check this):

F = {{CL}, {CL, b}’ {CL, C}v {a’v b,c, d}}

We see that in fact this filter base seems to be structured “around” a. To obtain a filter we could
simply take the upwards closure of F":

F':={Cc{a,b,c,d} : 3G e F,G = C};
an easy calculation then yields that F' is the set of all subsets containing a. |

The construction used in the previous example is extremely standard, and allows us to pass
from a filter base to a filter:

Definition 4.2.3. Let X be a topological space, and F' be a filter base. Then we define the upwards

closure of F as
Fl.={C<cX:3Ge F,Gc C},

and F! is a filter.

An important example of a filter is the collection of all neighbourhoods of a point, which we
denote by N (z).

Proposition 4.2.4. Let (X, 7) be a topological space, and 2 € X. Then N (z) is a filter.

Proof. First, note that since x € X, and X is a neighbourhood, we have that X € A/(x). Addition-
ally, if U,V € N (x), this means that there are open sets U’ € U and V' € V containing x. Hence
xelU nV' cUnNV,soUnV is again a neighbourhood of z. So N (z) is closed under binary
intersections. Finally, if V € A (z) and V € K, then certainly K is also a neighbourhood of z, so
K € N(x), as desired. [ |

The former proposition tells us that given a point x, there is a filter corresponding to it.
Motivated by our epistemic questions, we can ask whether to each filter we can associate a given
point, and whether this association can be made uniquely. In general, we certainly cannot expect
that this will hold for arbitrary filters: the singleton {X} of any topological space is always a
filter, but it is not clear to what point this should correspond. However, it is possible to make this
correspondence, so long as the filter can be related to the topological structure in an appropriate
way.

To understand this, let us look at a very important example:
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Example 4.2.5. We will say that an arbitrary collection .S of intervals converges to a if whenever
(x,y) is an arbitrary interval of real numbers such that a € (z,y), then there exists (z,3’) € S such
that x <2/ <y <y and a € (2/,y).

Clearly the collection of all intervals containing a point a — denote it by @), — converges to a.
Now, if “converging” ought to mean anything geometrically sensible, we would not want such a
collection to also converge to some other point b. Let us check whether this can happen: assume
that @, also approaches b, and a # b. Since the set of real numbers is totally ordered, we can assume
without loss of generality that a < b. By density and unboundedness of the rational numbers in the
reals, we can pick points ¢, d, e, f € Q such that a € (¢,d) and b € (e, f) and (¢,d) N (e, f) = &. By
hypothesis, since @, converges to b, we have that there is some rational interval (¢/,d’) € @, such
that e < ¢ < d' < f. But this is a contradiction. Hence, we conclude that @), cannot converge to
b unless a = b.

In this example, we are able to tell the two points a and b apart using the structure of intervals,
which as we know is a basis for the topology. What this should tell us is that reals are separated,
because we have enough topological structure to tell our points apart. We can now see how to
generalise this:

Definition 4.2.6. Let (X, 7) be a topological space and F' < 7 a filter (base). We say that the
filter (base) F' converges to a point x, and that x is the limit of the filter (base), if and only if for
every U € N(x), there is some V € F such that V < U.

Example 4.2.7. Fix a given z € 2¥, the Cantor space (recall Example 2.2.8). Then we can look
at the filter base of opens:
{C(zIn):new}.

I.e., the collection of opens determined by a finite part of the sequence x. Then we have that
this converges to x: indeed if U is a neighbourhood of x, we have that U 2 V for V an open
neighbourhood, and by the structure of the Cantor space:

V={]JC(s)

el

Now since = € V, then z € C(s;), which means that s; < 2. Hence for some n, s; = xn. So
C(zIn) <V as intended.

Both here and in the example above, one can think of taking intersections of sets as getting
to a finer and finer set, which eventually becomes a unique point. But we should stress that the
notion of convergence does not say anything about uniqueness. Indeed, in the Exercises you will
find examples of spaces — even reasonable looking ones — where filters may converge to multiple
points at once. This is a consequence of working with a notion as broad as that of a topological

space, and it is towards fixing this situation that we make use of Separation Axioms .

'Historic note: this narrative, whilst tempting, reverses the historical trend. The history of topology was one of
progressive rarification of the concepts; at times what we refer to as “Normal spaces” were considered to be the full
extent of topological spaces; later, axioms such as Hausdorff or 77 were taken to be fundamental.
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4.3 Hausdorff Spaces

The most frequently mentioned separation axiom is the following:

Definition 4.3.1. Let (X, 7) be a topological space. We say that X is Hausdorff, or Ty, if whenever
z,y € X and x # y, there there exist two open neighbourhoods xz € U, and y € V}, and

U nVy = .

Remark 4.3.1. A favourite pun of a topologist is that in a Hausdorff space, every two points are
‘housed off’ each other by two open sets.

As you can see, this axiom tells us that for any two models x and y, we are able to prove that
they are distinct. We can find a pair of verifiable properties U and V such that x satisfies U and
y satisfies V' and furthermore, we can verify that U and V cannot hold at the same time.

Example 4.3.2. Any set with the discrete topology is Hausdorff. No set with more than one
element, when equipped with the indiscrete topology, is Hausdorff.

Example 4.3.3. It can be illustrative to see what in the topological structure of a space makes it
Hausdorff. A quick glance at Example 4.2.5 shows that the argument there in fact shows that R is
a Hausdorff space.

The Cantor space is Hausdorff. An easy way to see this goes through the following: given n a
natural number, note that there are finitely many sequences of length n. Denote by Len(n) the set
of all such sequences. Now if t € Len(n) then:

2-Ccty=|J <c.

seLen(n)—{t}

This implies that the complement of a basic open set is again open. So assume that z,y € 2 and
x # y. Then this means that there is a finite sequence ¢ such that t < x and —(t<y), so z € C(t)
whilst y € 2¥ — C(t). By what we just argued, both of these sets are open, and their intersection
is disjoint.

Having gained some intuition from these examples, we can now see that Hausdorff spaces are, in
a precise sense, exactly those spaces where filters have unique limit points whenever they converge:

Theorem 4.3.4. Let (X, 1) be a topological space. Then the following are equivalent:
1. X is Hausdorff;
2. For each filter F on X, F' converges to at most one point;

Proof. (1) implies (2): Assume that X is Hausdorff. Let F' be a filter on X, and suppose that F’
converges to x and y. By assumption, there are some U, V', open sets, such that z € U and y e V
and U n'V = . By assumption, there are U’ < U and V' < V, and U’, V' € F. Because F is
a filter, U’ n V' € F; but then ¢§ € F, a contradiction. So by reductio, we conclude that F' can
converge to at most one point.

(2) implies (1): We go by contraposition, assuming that X is not Hausdorff. Assume that z # y
but for each pair of open sets U,V such that x € U and y € V, then U n'V # &. Hence consider
the collection:

F={UnV:zxeUyeV,UV are open }.
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Note that F' is a filter base: surely r € X andye X;if UnV e Fand U nV' € F, then U nU’ is
an open set containing x and V' n V' is an open set containing y, so (U nU’) n (V n V') € F; and
& # F. Taking the upwards closure of F, F'! we obtain a filter. Now we claim that F'! converges
to both z and y.

Indeed if U is a neighbourhood of z, then since y € X, Un X € F, so U € F. Similar arguments
hold for y. Hence F' converges to two distinct points. |

We conclude by noting that the Hausdorff property is nicely preserved under some topological
constructions, but not all of them:

Proposition 4.3.5. Let X and (X;);c; be Hausdorff spaces. Then:
1. If Y € X is a subspace, then Y is Hausdorff;
2. [ lie; Xi is Hausdorff.
3. [ 1,e; Xi is Hausdorft.
Proof. Exercise. |

Crucially, quotients need not preserve this property (or separation properties in general), as the
next example shows:

Example 4.3.6. Consider R + R, the sum of two disjoint copies of the reals, where elements are
denoted as (x,0) or {x, 1) depending on the summand they belong to. Now consider the equivalence
relation which identifies (z,0) and {z, 1) if and only if x # 0. The quotient under this equivalence
relation can be visualised in Figure 4.1:

~
-2 —1 4 (0,0) (0,1) 1 2
~~—

Figure 4.1: Reals with a Double Point

Then note that this double point cannot be separated by any open set: take any open neigh-
bourhood Uy containing [(0,0)] and a neighbourhood U; containing [0, 1)]. Since they are open,
¢ '[Up] must be open as well by the quotient topology. By the definition of the topological sum,
and the usual Euclidean topology we then have that:

¢~ [Uo] = [ J(as,0), (i, 0)).

el

Now since (0, 0) belongs in ¢~![Up], it belongs to some interval, say ((a,0),{b,0)) where a,b are
real numbers; similar for an interval ({c,1),{d, 1)), included in ¢~'[U;]. Now define

e :=min(|al, |b], |c|, |d])
and look at {(¢,0) and {e,1). It is not hard to see that this will be in ({a,0),{b,0)) and also

({c,1),{d,1)). Hence [(e,0)] = [{e,1)] € Up n U;. Thus, we cannot separate (0,0) and (0, 1) using
disjoint open neighbourhoods. |
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4.4 Weaker Separation Axioms

Whilst Hausdorff topologies are extremely convenient, there are some cases where one might
need weaker conditions. An example from geometry:

Example 4.4.1. Suppose that you take the collection R. We denote by Pol(R) the collection of
all polynomials over R of the form:

f(@) =apx™ + ...+ a17 + ag

Now define a topology on R, called the Zariski topology 77, as follows: U is closed if and only if
U={xeR:35 < Pol(R),Vf €S, f(x) = 0}: that is, U is the set of zeros of the polynomials f € S.
Then note that given Z and Z’, two open sets, Z n Z’ will be non-empty, since their complements
are finite (any polynomial has only finitely many zeros). Hence this space cannot be Hausdorff.

The former is a naturally occuring example which motivates the following definition:

Definition 4.4.2. Let (X,7) be a topological space. We say that X is Fréchet or T; if for all
x # y € X there exists an open neighbourhood U, such that x € U, and y ¢ U,.

Notice that the fact that y ¢ U, does not imply that we can verify that y does not satisfy Uy,
since X\U, may not be open. To verify that y does not satisfy U,, we require that y € int (X\U,).
Meaning that a Fréchet space is too weak to affirm that x is not equivalent to y.

We can generalise the former example, to something which almost always yields a T} space
which is not Hausdorff:

Example 4.4.3. Let X be an infinite set. Define a topology on X as follows: U < X is open iff
either U is empty, or U contains all but finitely many points. Then (X, 7.,¢) is a T} topology: given
x # y, pick the set containing all but y, and this provides an open neighbourhood of = excluding y.

However, this space is not Hausdorff: given any two open sets U,V if U n'V = ¢, then since
all non-empty subsets contain all but finitely many points, this can only happen if either U or V is
empty.

Sometimes, though, the inherent symmetry of the T} space can cause us problems. Especially
when dealing with very weak topologies, like Alexandroff topologies, it can be useful to have an
even weaker property:

Definition 4.4.4. Let (X, 7) be a topological space. We say that two points z,y are topologically
distinguishable if there exists an open neighbourhood U, , such that either x € U, , and y ¢ Uy,
ory € Uy and = ¢ Ug,. We say that the space X is Tp if all pairs of points are topologically
distinguishable.

Example 4.4.5. Any set with the indiscrete topology with more than one element is not 7j.

For an example of a space which is Ty and not T consider the Sierpinski space (which we have
briefly encountered in Chapter 2): this is the topology on the set {a,b}, where we say that {b} is
open and not closed. It is easy to see that the points are topologically distinguishable, however,
the distinction can only be made in one direction.

Example 4.4.6. Consider § = (W, R) a Kripke frame. Then one can prove the following two facts,
related to these weak separation properties:
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1. The topological space induced by § is 17 if and only if R corresponds to the identity.

2. The topological space induced by § is Tp if and only if R is a partial order (i.e., it is antisym-
metric).

You can check that any Ty Alexandroff space induces a Kripke frame when one considers the
following partial order: x < y if and only if whenever x € U then y € U for U an open set. In this
sense, the order denotes “having more knowledge”. In a sense, this means that only Ty spaces are
interesting for epistemic settings with a dynamic component.

A mathematically very natural example of a space satisfying the axiom Ty but not necessarily
any stronger separation, which is related to the former, is that presented by so-called “spectral
spaces”. These are abundant in mathematics, occurring in algebraic geometry, and in functional
analysis; in logic they appear through duality theory and the study of algebraic logic and topos
theory. Additionally, the notion of topological distinguishability is quite interesting in and of itself,
and provides a gateway to the area of point-free topology; see the Exercises for more on this.

4.5 Stronger Separation Axioms

On the flip side, we might sometimes need stronger properties than Hausdorff. We mention one
very common strengthening:

Definition 4.5.1. Let (X, 7) be a Hausdorff topological space. We say that X is normal or Ty if
whenever F, F' are disjoint closed sets, then there exist open sets U,V, E < U and F < V, such
that U n'V = .

Normal T; spaces are stronger than Hausdorff because they imply that not only can we dis-
tinguish models from each other, but we can also verify that the models do not satisfy certain
properties. However, it is when working with geometry that normality appears as a very strong,
and very desirable property. This is because it allows us to relate arbitrary topological spaces to
the real line:

Definition 4.5.2. Let X be a topological space. We say that two disjoint closed subsets E, F' are
separated by a continuous function if there is a map f : X — [0,1] such that E < f~![{0}] and

Fc {1
We have the following fact, known as Urysohn’s Lemma, which we mention without proof:

Lemma 4.5.3. Let X be a T} space. Then X is normal if and only if every pair of disjoint closed
subsets can be separated by a continuous function.

A weakening of this, sometimes referred to as a Tychonoff space, yields an important class in
its own right:

Definition 4.5.4. Let X be a space. We say that X is Tychonoff if it is T and whenever A is
closed and x ¢ A, then A and {z} are separated by a continuous function.

The following proposition follows immediately from Urysohn’s Lemma:

Proposition 4.5.5. If X is a normal topological space, then X is Tychonoff.
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Example 4.5.6. The space R is normal. To see this, given A an arbitrary subset, denote by
fa:R—[0,00) < R the following function:

x—d(xz,A) = inf{|x —a|: a € A}.

We have that f4 is a continuous function. Indeed if (¢,d) is any interval, we want to show that
f1'l(c,d)] is open. Let = be a point there. Hence 0 < d(z, A) < d. Let ¢ < |d — d(x, A)|, and look
at the interval (z — e,z + ). Then if z belongs to that interval, we have that d(z, A) = inf{|z —a| :
ac A} <inf{|z —z|+|r—a| :ae A} < |z — x|+ d(z,A). But the latter is less than or equal to
|d — d(z, A)| + d(x, A), which since d(z, A) and d are positive, means that d(z, A) < d. This shows
continuity. We think of f4(z) as outputting the distance of = from the set A.

Now then, assume that E and F' are disjoint closed subsets. Then look at the function:

fe(x)
fe(z) + fr(z)

Note that this function is well-defined, given that A n B = J, i.e., every point is at a positive
distance from either FE or F'. It is not hard to prove that h is then a continuous function. Moreover,
if v € E, h(z) = 0, and if z € F, h(x) = 1. Hence E € h™1[{0}] and FF < h~![{1}]. Hence by
Urysohn’s Lemma, we have that R is normal. |

h(z) ==

On the other hand, the existence of Hausdorff spaces which are not normal is a rich area of
study in the field of set-theoretic topology. We discuss one example here.

Example 4.5.7. (Sorgenfrey Plane) Consider the following topology 7, on R: we say that a set
U is basic open if and only if it is of the form [a,b), i.e., an half-open interval. We call this the
Sorgenfrey line. Now let S = R x R be the plane obtained by taking the product topology on two
copies of the Sorgenfrey line. The basic opens are then the squares which are open on the right
and closed on the left, as detailed in Figure 4.2. Note that this space is Hausdorff: if (x,y),{a,b)
are two distinct pairs of real numbers, then we have a few possibilities:

o Ifx = atheny # b, so without loss of generality, assume that y < b, and pick c an intermediate
point. Then for some x < d, we have that (x,y) € [a,d) X [y, ¢) and {a,b) € [a,d) X [¢,b+¢€),
which are disjoint sets.

o If x # a, a similar argument to the previous point shows that they belong to disjoint open
sets.

Now consider:

A={z,—z):zeR}

We call this set the antidiagonal. We can show that it is closed: if a point (a,b) ¢ A, then we
can pick a sufficiently small neighbourhood to avoid the antidiagonal entirely. This can be done
by taking the minimum of the distances from a to A and b to A, and picking a neighbourhood
around {a, by of that size, as in Example 2.3.7. Additionally, the induced subspace is discrete: given
{x, —x), consider the rectangle [—xz, —x + €) x [z, x + €); then this intersects the antidiagonal only
at the point (x, —x), showing that all singletons are open in the subspace A.

To show that the space cannot be normal, we now simply need the following Lemma due to
Jones:
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AN

A={(x x)|xeR}

Figure 4.2: Antidiagonal on the Sorgenfrey plane

Lemma 4.5.8. (Jones Lemma) Let X be a normal topological space. If D is a closed and discrete
subspace, then 2P < 2%

Since |A| = 2%, by Cantor’s theorem, 2|21 > 9% Using the above lemma, this shows that the
space cannot be normal. |

The former example also provides a key difference with Hausdorff spaces: one can show that the
Sorgenfrey line is a normal space, hence, the product of normal spaces need not be normal. The
full extent of how products and normality relate is not yet full understood, and is related to various
interesting areas of set-theoretic topology, including the existence of Dowker spaces (shown by Mary
Ellen Rudin and Saharon Shelah) and the famous “Normal Moore space conjecture”, eventually
proven to be independent.

As we will see in the next chapter, normal spaces occur quite naturally in the presence of more
topological ingredients, like compactness. We also note that all of the properties we mentioned
(Hausdorff, Frechet and Normality) are topological properties in the sense we specified above:

Proposition 4.5.9. If X >~ Y then X is Hausdorff (resp. Freéchet, Normal) if and only if YV is
Hausdorff (resp. Fréchet, Normal).

Nevertheless these properties are not in general preserved by continuous functions, as the above
Example 4.3.6 shows, and you are asked to look at in the Exercies.

We conclude with a small table summarising the separation classes we have seen so far, and
some important examples:

Separation Class | Kind of Separation Non-Examples
To x # y then x,y are top. distinguishable Ind. Top

Ty r#ythenidUer,xelUpy Sierpinski

Ty r#ythen AU, Ver,xelUyeV, UnV =g Cof. Top.

T Ty + A x¢ A 3f: X —>[0,1], f(x) =1, A< fH{0}]

Ty To+ EnF =, closed, WU, VerUnV =g, FE<UF <V | Sorgenfrey

4.6 Exercises

Exercise 4.1. Show the following;:
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1. Prove the statements in Example 4.4.6 regarding 77 and Tj.

2. Give an example of a T}-Kripke frame §, and a continuous function f to another Kripke
frame §', such that § is not 7.

3. Give an example of a frame § = (W, R), with its canonical Alexandroff topology, and a filter
F on this frame which converges to two distinct points. Can you find an example which is
To? What about 177

Exercise 4.2. Let (X, 7) be a topological space. Let A € X be a subset. We say that A is dense
in X if A=X.

1. Show that Q is dense in R.
2. Show that is A is dense in X, then A intersects all open subsets of X.

3. Let X be a topological spaces and Y a Hausdorff space, and let A < X be a dense subset.
Let f,g: X — Y be two continuous functions such that fl4 = gl 4. Show that f = g.

4. Show that if A is dense in X, then every filter over A (i.e., FF < P(A)) converges to some
point in X.

Exercise 4.3. Show that the following property is equivalent to a space X being Hausdorff: the
diagonal A = {(z,z) : x € X} is closed in X x X.

Exercise 4.4. Show the following for a 7T7-space X:
1. If X is finite, then the topology on it is discrete.
2. For each z € X, {z} is closed.

3. For each x € X, the filter
Fz)={ScX:zeS}

converges uniquely to z.
Show that the last property is an alternative definition for Tj-spaces.

Exercise 4.5. Let L = (L, <) be a linearly ordered set. We can induce a topology called the order
topology, by specifying that the following sets are subbasic opens for each a € L:

(a,—»)={beL:a<b}and («,a) ={beL:b<a}
1. Show that the order topology is always a Normal topological space.

2. (* In case you know ordinals): Let a be an ordinal with the order topology. Show that
the limit points in this space are exactly the limit ordinals. Show that a set is closed and
unbounded in the set-theoretic sense if and only if it is unbounded and topologically closed.

Exercise 4.6. Let X be a topological space. Define an equivalence relation on X as follows: = ~ y
if and only if for all U open subsets, x € U if and only if y € U. Show that X/ ~ is always a Tj
space.
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Definition 4.6.1. Let X be a topological space. We say that a closed subset S € X is irreducible
if there do not exist two distinct closed subsets Uy, U7 such that Uy u U; = S. We say that X is
sober if whenever S is an irreducible subset, there exists a unique x € X such that:

S = {z}

Exercise 4.7. Show that every Hausdorff space is sober. Also show that sobriety is not comparable
to the T condition, i.e.:

1. There is a T} space which is not sober;
2. There is a sober space which is not 7.

Definition 4.6.2. Let X be an arbitrary space. We say that a filter F' over X is completely prime
if for all families (U;);es of open sets:

| JUieF < 3iel,UieF

el

Exercise 4.8. The purpose of the following exercise is to show that sobriety as defined above can
be characterised by completely prime filters.

1. Show that if X is any topological space, for each x € X, N (x),, — the family of open neigh-
bourhoods of x — is in fact a completely prime filter.

2. (Tricky!) Show that a space X is sober if and only if whenever F' is a completely prime filter,
there is some x € X such that F' = N (2),p.
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Chapter 5

Compactness

5.1 Extending Filters and Existence of Points

In the previous chapter we began by talking about two kinds of theories: definitive ones, and
saturated ones. We have seen that filters implement naturally the notion of a theory, and converging
filters provide us with a notion of a definitive theory. We now need something that corresponds to
saturation. As one can expect, these will also be special kinds of filters:

Definition 5.1.1. Let X be a set and F' a filter. We say that F' is a prime filter (or sometimes a
1Y if it satisfies the following:

e Foreach U,V X, UuVeFifandonlyif Ue ForVeF.

Before proceeding, we collect some essential properties of fluffy filters in the next lemma. In
particular, part (4) will show that fluffy filters implement the notion of being a saturated theory;
part (5) will often be used without mention, as these equivalences are crucial properties of working
with prime filters. The proof is left as an exercise, which the reader not already familiar with filters
is strongly encouraged to attempt:

Lemma 5.1.2. Let X be a set. Then:
1. If I is a totally ordered set, and (Gj)qer is a chain of filters, then | J,.; G; is a filter.
2. If F'is a filter and A € X is a subset such that for each Be F, An B # (&, then:
FeoA={CcX|IBe F(AnBc ()}
is a filter, and is the smallest filter extending F' which contains A.
3. For any x € X, the collection {U € X : x € U} is a prime filter.

4. For a filter F', the condition of being a prime filter is equivalent to the following;:

o For any F' < (P(X) —{@}), if F < F’, then F’ is not a filter.
e For any U, either Ue For X —U € F.

!See the end notes of Chapter 7 for an explanation of this nomenclature.
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Proof. Exercise. |

One key result by Tarski we will need is that filters can always be extended to prime filters.
This involves a use of the Axiom of Choice, namely through Zorn’s Lemma:

Theorem 5.1.3. (Tarski, Prime Filter Theorem) Let X be a set and F a filter base on X. Then
there exists a prime filter G 2 F.?

Proof. We note that since each filter base can be extended to a filter by taking its upwards closure,
it suffices to show that each filter can be extended to a prime filter. Let F' be such a filter. Consider

the following set:
{G:Gisafilter ,G 2 F}

We have that ordering this set by inclusion we have a partially ordered set, such that each of its
chains has an upper bound: indeed if (G;);es is a chain of filters extending F', then consider:

Jai

el

By Lemma 5.1.2, we have that this is a filter, and it extends F'. So by Zorn’s Lemma, we have that
there exists some maximal element, say G. We claim that G is prime. Assume that U ¢ G, and
X — U ¢ G then by upwards closure, there can be no C € X — U such that C € G. Hence for each
C,CnU # J, since:

CnU=g = CcX-U.

So by Lemma 5.1.2, we have that there is a filter G @ U, which properly extends G; but this is a
contradiction, since G was maximal. Thus either U € G or X — U € G, which shows that G is a
prime filter. |

With this in mind, let us proceed to see the topological meaning of these filters.

5.2 Compact Topological Spaces

Returning to our epistemic intuitions, we now have all the tools for a more precise discussion.
We have seen in the previous chapter that definitive theories are saturated in Hausdorfl spaces:
they can be identified with filters {U < X : z € U}, which as stated above, are prime, and hence,
implement saturated theories. So what about the converse?

To understand this, suppose that our epistemic landscape consists of countably many points
Ty, where x, stands for a world where an alarm clock will ring after n many seconds. Hence we
have the (falsifiable) proposition:

P, = “The alarm clock will ring after more than n many seconds”.

Certainly in our epistemic landscape each of the propositions P, is consistent — there is some world
where the alarm clock rings after more than n many seconds. But there is an obvious option that
seems to be missing — what happens if the alarm clock is simply broken? Our model seems to have

2The reader who is familiar with lattices will find that the former carries out for any distributive lattice. This will
be discussed in MSL.
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the finite traces of this possibility — for each n, we have a world where the alarm clock takes longer
than n many seconds to play — but not a world where it simply does not play at all.

This leads us to another crucial notion of topology: compactness. As our example hints, com-
pactness can be thought of as a completeness property of our spaces, since it forces the existence
of points. However, the topological notion of compactness we often encounter appears to be very
different. To properly introduce it we will need some more basic concepts.

Definition 5.2.1. Let X be a topological space, and A € X. Given a collection (U;);e; of open
sets, we say that this is an open cover of A if:

A={Ju.
el
Given such a cover, we say that a subcollection (U;) ey for J < I is a subcover if it is a cover of A.

We say that a cover is finite if I is finite.

Definition 5.2.2. Let X be a topological space. We say that X is compact if whenever (U;);er is
an open cover, there exists a finite Iy < I such that (Uj);er, is a subcover of X.

Example 5.2.3. The set R with the usual topology is not compact. For instance, we can consider

the following open cover:
{(k,k+2):keZ}

which, if we remove all but finitely many of the intervals, will leave gaps. 3
Similarly, the Baire space w® is also not compact: one can consider the cover:

{C((n)) :n e w}
Which, if we take away a single point, will leave infinitely many points uncovered. |

As in other situations, it suffices to check compactness on a basis to obtain compactness of the
whole space:

Proposition 5.2.4. Let (X, 7) be a topological space with a basis B. Then a set is compact if and
only if every cover of X by basic open sets has a finite subcover.

Proof. If the set is compact surely every such cover has a finite subcover. Conversely, assume that
every cover of a set by basic opens has a finite subcover. Suppose that:

X = Ju
el
where each U; is open. By the properties of the basis, we have that:
x=UUw
i€l jeJd;
which is a cover of the set by basic opens. We can then extract a finite subcover:
X=Vj,u.uV

which entails the result. |

3However, it is well-known that the interval [0, 1], which is homeomorphic to adding a point above and below the
reals, is compact. This is the so-called Heine-Borel Theorem. The reader is asked to show this, using the ideas of the
corresponding proof for the Cantor space, in the Exercises.
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The corresponding result for subbases is indeed true, but more difficult. This is often referred
to as Alexander’s Subbase theorem, and it is a very valuable tool when dealing with spaces defined
using subbases®. On a first pass, the reader may want to skip the proof, and instead focus on
the applications of it (e.g., below Tychonoff’s theorem, or, in MSL, the proof of compactness of
Priestley spaces).

Theorem 5.2.5. (Alezander Subbase Theorem) Let X be a topological space with a subbasis S.
Then X is compact if and only if every cover of X by subbasic opens has a finite subcover.

Proof. One direction is easy. For the other, assume that B is a cover of X which does not contain
any finite subcover. Using a Zorn’s Lemma argument, we can assume that B is maximal: indeed,
let P be the set of open covers of X which contain no finite subcover. If B; is a chain by inclusion
of such objects, then we claim that: U

B;

el

is again such an object. Indeed, it will clearly be a cover of X. Additionally, if it contained a finite
subcover, say Uy, ..., U,, note that since this is a chain, we can place Uy, ..., U, together in some
Bi., which contradicts our hypothesis. This shows that the poset P is in the conditions of Zorn’s
Lemma, and hence, there is some maximal B'.

Now note that B’ n S, where the latter is the subbasis, cannot cover X, since otherwise, by our
assumption, we could extract a finite subcover from B’. So let z € X — [ J(B' n'S). Since B’ is a
cover, there is some U € B’ such that x € U; since S is a subbasis, we have that:

U= Vi nW
keK

so x € Vigy 0 ... n Vi,. Now by choice of x, then Vi, ¢ B’ for 0 < i < . Since B’ was chosen to be
maximal, we have that since B’ U {V4,} is a cover of X (since B’ is one already), it must contain a
finite subcover. Hence, for each i we can obtain a finite subcover:

X=C’8u---qu”qui

where each CJ, € B'. It follows that the following is a cover of X:

l

l l
X = ﬂ (Chu---uCl UV,) S (U(Cé u---uC,ili))u(Vkom---kal) c <U(Cé u---uC'f;Li)) uU
i=0 i=0

=0

But note that the latter is a finite cover of X by elements all in ', which is a contradiction to our
hypothesis. So by reductio, there must be a finite subcover of B. |

Let us now move to some positive examples:

Example 5.2.6. The Cantor space is compact. To see this, we take a cover of 2* by basic open
sets; that is, take a collection T' € 2<% and assume that

29 = | JC(s).

seT

41t is also interesting to note that this result makes necessary use of a weak form of the Axiom of Choice — indeed,
what is necessary is exactly the Prime Filter Theorem we have just stated.
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Assume towards a contradiction that there is no finite subcover of this cover. Notice that this
means that the set C(¥) admits no finite subcover. But this must mean that either C'({0)) or
C({1)) admits no finite subcover by these sets. Let so be one such sequence which does not admit
any finite subcover. Proceeding inductively, we assume that we have established that C(s,) admits
no finite subcover; then using the same argument, we have that either C(s;,0) or C(s;"1) admits
no finite subcover.

Hence, we obtain an infinite binary sequence:

z = lims,
new
composed of each finite part of the previous sequences, i.e., such that for each n, C(zl,) admit
no finite subcover from the above cover. By assumption z € 2¥ = | J, ., C(s), so z € C(s) for
some s. Hence s = s, for some n. But by hypothesis, C(s,) admitted no finite subcover, a
contradiction. |

Let us now prove some properties of compact spaces. An important such property connects
back to our intuition of compactness as a completeness property, and the example provided in the
beginning of the section. We begin with a reformulation of compactness using closed sets:

Definition 5.2.7. Let X be a set, and S € P(X) a family of subsets. We say that S has the finite
intersection property if whenever Ay, ..., A, € S then Agn...n A, # .

Lemma 5.2.8. Let X be a topological space. Then X is compact if and only if, whenever F is a
family of closed subsets with the finite intersection property, then (| F # .

Proof. Assume that X is compact, and let F be a family of closed subsets with the f.i.p. Assuming
that (| F = & we get that (. 7 X — U = X; by compactness, we can extract a finite subcover,
say:

X=X-Uyvu..uX—-U,.

Hence the finite intersection Uy n ... n U, is empty, a contradiction. The converse is similar and
left as an exercise. |

Using this criterion, we can provide the desired equivalent notion to compactness, which relates
it to the existence of points.

Proposition 5.2.9. Let (X, 7) be a topological space. Then X is compact if and only if whenever
Uis a , then U converges in X.

Proof. Let U be the prime filter and look at:
ﬂlx{cl ={C:Cel,C is closed }.

We know that U, is a family of closed sets with the f.i.p., so since the space is compact, by Lemma
5.2.8, the intersection is non-empty. Now assume that x € (U.; suppose that U is an open
neighbourhood of x; we claim that U € U. Indeed, if not, then X — U € U; since U is open, this in
turn implies that X — U € U,;. Hence by definition x € X — U, a contradiction. Hence U € U, so
trivially U € U and x € U; this shows that U converges to z, as intended.
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Conversely, assume that each prime filter converges to at least one point. Assume that X =
Uies Ui is a cover of X by open sets which has no finite subcover. Hence consider:

{X — Uio N..nX— Uzn : {io,...,in} - I}

Note that by hypothesis, this is a collection of non-empty sets, since if X —U;; n...n X =U;, = &,
then U;, U ... u U;, = X. Moreover, X belongs above, since we can take the empty family, and it
is not difficult to see that elements of this set are closed under intersection. Hence the above forms
a filter base. By the Prime filter Theorem, we have that this can be extended to a prime filter, U;
by hypothesis, we have that & converges to a point x. Take ¢ € I s.t. x € U;. Then by convergence,
there is some V € U s.t. V < U;. But then V n (X — U;) = @, which is a contradiction because
(X —Uj)eU and @ ¢ U. [ ]

To cap us off, we can also consider compactness relatively:

Definition 5.2.10. Let X be a topological space. We say that A € X is a compact subset if A is
compact as a topological space with the subspace topology.

Lemma 5.2.11. Let X be a compact topological space. If A is closed, then A is a compact subset.

Proof. Assume that A is closed, and suppose that:
A=]Ju
iel

where U; are open in A. Hence for some V; € X, open subsets, we have that U; = V; n A. Now
since A is closed, we then have that:

X:(Um>uw—m.

Indeed if x € X, then either x ¢ A, or, x € A, and then for some i, z € V; as well. So since X is
compact, there is a finite subcover, i.e.:

X=VWu---uV,uX-—A.

Then note that A = Uy u --- U U,: if x € A, then for some j < n, x € Vj; so x € U;. The converse
inclusion is clear. |

The former thus explains, at least in part, how compactness is preserved under subspaces. It
is not very hard to see that topological sums will not preserve compactness in general, and that
quotients will. The latter follows from the following:

Proposition 5.2.12. Let X be a compact topological space, and f : X — Y a continuous function.
Then f[X] will be compact as well.

The most interesting case with respect to the constructions we studied arises from products.
We have the following theorem, which puts Alexanders’ subbase theorem to good use:

Theorem 5.2.13. (Tychonoff’s Theorem) Let (X;)ier be a collection of compact spaces. Then
[ [;e; Xi is compact.
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Proof. By Alexander’s subbase theorem, note that it suffices to show that every cover of the product
by a cover from subbasic opens contains a finite subcover. Recall by definition of the product space
that the subbasic opens are sets of the form

where ¢ € [ is any coordinate and Uj; is an open in X;. Now indeed assume that:
—1
[ [xi= Upij (Uiy).
el jeJ

By definition of the projection function, if we let p; 1(Uio) be arbitrary, then only finitely many
coordinates i; € I are left uncovered, since p; 1(Ui ) is equal to X;; in all but one position. Now
assume that 7 is that position. Then by assumption we can cover X;, using some of the sets Uy
ocurring in the cover above. By compactness of these spaces we can extract a finite subcover on

each of these spaces, which yields a finite subcover of | [,.; X, as intended. |

5.3 Compact Hausdorff spaces and Compactifications

In practice many important spaces one works with are compact Hausdorff, and these are very
amenable, both for geometry and logic.

Theorem 5.3.1. Let X be a topological space. If X is compact and Hausdorff, then:
e X is Normal;
e The compact subsets are precisely the closed ones.

e If f: X — Y is a continuous bijection between compact Hausdorff spaces, then f is a
homeomorphism.

Proof. (1) Assume that E and F are disjoint closed subsets. Note that by Lemma 5.2.11, we know
these are compact. Fix x € E; then since the space is Hausdorff, for each y € F' we have that there
is some x € U, and y € V, , such that U, , n V., = J; hence we have that:

Fe|JVay
yeF

so since F'is compact, F' € Vo U ... UV, = V,, where the latter does not contain x; hence look
at Uy = Uz yy N ... 0" Ugy,, and note that this is open, and disjoint from V,; hence we obtain a

EQUUx

zelE

cover:

and because of compactness, then £ < Uy, U ... U U, . So look at V,, n... nV,, . Note the latter
is an open set containing F', and is disjoint from U, U ... U Uy, , as intended.

(2) We already know that closed subsets are compact in any compact space. Now assume that
A is compact. Suppose that x ¢ A. Then for each y € A, there is some U such that x € U, and
y € V,, where these are disjoint open sets. Hence A < Uye 4 Vy, and by compactness we can extract
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a finite subcover, say A <V, u...uV,, . Hence z € Uy, n ... n Uy, , which is an open subset which
is disjoint from A. Hence X — A is open, which shows that A is closed.

(3) Assume that f : X — Y is a continuous bijection from a compact to a Hausdorff space. Let
U be a closed set; then because U is compact, so f[U] is compact by Exercise 5.3; hence f[U] is a
compact and since Y is compact Hausdorff, f[U] is closed. Thus by an Assignment Exercise (See
Assignment 1, Exercise 3), we have that f is a homeomorphism. |

Given these (and other) properties, we might want to take our spaces and turn them into
compact Hausdorff spaces. Taking a space and making it Hausdorff is somewhat hopeless: we
cannot separate a space in a way that relates naturally to the original topology. The situation is
much better for compactness: finding such a space is not difficult, but it can be difficult to find one
preserving all properties we are interested in. We thus need a general idea of what it is to turn a
space into a compact one.

Definition 5.3.2. Let X,Y be topological spaces such that f : X — Y is a continuous function.
We say that the pair (Y, f) is a topological extension of X if f[X]is dense in Y (i.e., f[X] =Y).%.
We say that an extension is

e A compactification: if Y is compact;
e A proper extension if f is a homeomorphism and X is non-compact.

o A strong compactification if it is a proper extension, a compactification, and f[X] is open in
Y.

Let us look at some examples: first consider the set w, and give it the discrete topology. It
is easy to see that such a topology is Hausdorff, and is not compact (since the collection of all
singletons is an open cover with no finite subcover). Now consider the space in Figure 5.1:

0 1 2 w

Figure 5.1: One-point compactification

We give this space the following topology: a subset is open if and only if either it is a subset of
the naturals, or a cofinite subset containing w. This space is often denoted a(w), and is called the
Alexandroff one-point compactification; you can verify that indeed it is compact, and also Hausdorff.

There are some general facts one can say about compactifications, which relate to some sepa-
ration properties we have mentioned before, and which we mention without proof:

Proposition 5.3.3. Let X be a topological space. Then X can be topologically embedded in a
compact space if and only if X is Tychonoff.

As such, we cannot expect a procedure that yields proper extensions in general. But for com-
pactifications, it turns out that there is a general procedure following the same recipe as the
construction of a(w), that works for all spaces:

Definition 5.3.4. Let X be a topological space. Let X* := X 1i{o0}, and topologise this as follows:
a subset U € X* is open either if it is open in X, or if U = X — C U {0} where C' is a compact
and closed subset of X.

5Note: None of this terminology is standard, since the existing terminology seems to differ a lot between authors.
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Proposition 5.3.5. Let X be a non-compact topological space. Then (X*,1) is a strong compact-
ification of X.

Proof. Note that the inclusion is by definition a topological embedding. It is also dense: consider
the element oo, and let U be an open neighbourhood of this point. Since X is not compact, then
U # {0},s0 UnX # &. Thus oo € X. Finally, it is easy to see that the resulting space is compact:
if X = J,c; Ui is a cover by opens, then there must be some U; = X — C 1 {00}; hence this space
covers everything but a compact subset of X, for which we can extract a finite subcover from the
cover | J,.; Ui. [ |

This compactifition is useful, as in most cases it adds the minimum number of points to make
the space compact. However, it has the drawback that even when starting from a Normal space it
might result in a non-Hausdorff space (see Exercise 5.7)!

A way to avoid this happening is to add some compactness to begin with. The following is one
of many “local” properties which play a big role in all areas of topology:

Definition 5.3.6. Let X be a Hausdorff space. We say that X is locally compact if for each x € X
there is a compact neighbourhood of .

With this we can show the following:

Proposition 5.3.7. Let X be a non-compact Hausdorff space. Then «a(X) is Hausdorff if and only
if X is locally compact.

Proof. See Exercise 5.8. [ ]

However, this solution might not be particularly pleasant. One may want to always obtain a
compact Hausdorff extension of our space®. This way we are lead to the notion of a Stone-Cech
compactification.

Definition 5.3.8. Let X be a topological space. We say that a pair (Y,i) where i : X — Y is a
Stone-Cech compactification if it satisfies the following property: if Z is a compact and Hausdorff
space, and f : X — Z is a continuous function, there is a unique continuous function f : Y — Z
such that f = f oi.

X Ly
x&f
VA

Figure 5.2: Stone-Cech Compactification

Whilst it might not be immediate from the definition, this construction is unique. Indeed, if
(Y,4) and (Y',#’) were two such compactifications, note that by definition then there are:

51f you are familiar with the concept of an adjunction another way of saying this is as follows: is there a left adjoint
to the inclusion of the category of compact Hausdorff spaces in the category of all topological spaces? By abstract
nonsense (e.g., Freyd’s adjunction theorem) it is possible to see that such a left adjoint must exist, and what we give
here is a concrete description.



e i:Y > Y suchthat i =407

e i’ :Y’' - Y such that i/ = o3.

It follows that i = 704’ o4. But then by the same property, we have that 1y is the unique function
such that i = 1y 0i. So 404 = ly. Similarly 7/ 07 = 1ys. This shows that the two spaces are
homeomorphic, showing the uniqueness.

In light of this, the Stone-Cech compactification of a space X is usually denoted by 8X. The
construction of this is quite technical, so we delay the full definition. Instead, let us look at an
example.

Example 5.3.9. Consider again the space w with the discrete topology. Now let Sw denote the
set of all prime filters over w: all subsets of P(x) which are prime filters in the usual sense. We
give this space the following topology: a basic open looks like

p(U) ={fepuw:Ucef}

where U € X. Then we can show that this space is compact and Hausdorff, and indeed, is a
compactification in the sense outlined above.

More generally, for any discrete space X, the Stone-Cech compactification is obtained by taking
the set of prime filters over X, and forming the basis as above.

We now proceed to give a general construction of the Stone-Cech compactification. As noted,
the reader may wish to skip this in a first reading, and we provide it here only for completeness.
To give it we will need some properties of the space [0, 1].

Lemma 5.3.10. Let X,Y be two compact Hausdorff spaces, and assume that f,g: X — Y are
two distinct continuous maps. Then there is continuous h : Y — [0, 1] such that hf # hg.

Definition 5.3.11. Let X be an arbitrary topological space. Let C(X) denote the set of continuous
functions from X to [0,1]. Let i : X — [0,1]¢X) (where the latter has the product topology) be
given by: = maps to the function ¢ : C'(X) — [0, 1] which, on function f, returns f(z).

Lemma 5.3.12. The map i : X — [0,1]°) is continuous.

Proof. We first show that the preimage of a subbasic open is open. Let U = pJIl(a, b) where
0 < a < b <1 are real numbers. Hence these are functions from C(X) to [0, 1] which map f to
this interval. Hence we claim that:

i'wi= {J ')
)

feC(x

Indeed, if i(x) € U, then i(z)(f) = f(z) € (a,b), so x € f~(a,b). Conversely, if z € f~!(a,b), then
certainly i(x)(f) € (a,b). Since the functions f are all continuous, and (a,b) is open, then i~1[U]
is a union of open sets, and hence, open as well. [

By Tychonoff’s Theorem 5.2.13, we have that [0, 1]C(X) is compact, and by Proposition 4.3.5,
it is Hausdorff. Hence let K = i[X], i.e., take the closure of the image of 7 in this space. It is clear
that then (K (X),1) is a Hausdorff extension of X, since it is a closed subset of a compact space,
and compact as well.
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Lemma 5.3.13. If X is Compact and Hausdorff, then X =~ i[X].

Proof. We will show that the map 7 is injective. Assume that x # y. Hence because the space is
compact and Hausdorff, by Proposition 4.5.3 there is a function f : X — [0, 1] such that f(z) =0
and f(y) = 1. Thus f e C(X), and so i(z)(f) # i(y)(f). This shows that 7 is injective. Since X is
compact, and i[ X | is Hausdorff, then we have by Theorem 5.3.1 that i is a homeomorphism. W

The next lemma, which we mention without proof, is useful below: ”

Lemma 5.3.14. Assume that m : X — Y is a continuous map. Let 7 : [0,1]°(X) — [0,1]¢()
be given as follows: for each g € [0,1]°(X), consider the function g,, : C(Y') — [0, 1], such that if
f Y — [0,1] is arbitrary, it is mapped to g(f o m). Then this is a continuous function on the
product space.

Proposition 5.3.15. Given a topological space X, the pair (K (X),?) is the Stone-Cech compact-
ification of X.

Proof. Let Z be an arbitrary compact and Hausdorff space, and m : X — Z be a continuous
function. By the previous lemma, consider 7 : [0,1]¢X) — [0,1]9(?), and consider the restriction
of 72 to K (X). This is a continuous function from K (X) to [0,1]¢%). Now let g € i[X] be arbitrary.
Any such function, by construction, is determined by an element x € X, hence g = k, for some
r € X. Now note that then m(k;) = ky,(y): indeed, given f: Z — [0,1], m(k:)(f) = kz(f om) =
f(m(x)). This then shows that:

m(i[X]) € i[Z]

Since 7 is continuous, we have that m[i[ X]] € m[i[X]] € i[Z], where the last inclusion holds since
the latter set is closed by Proposition 5.3.13. It follows that m[K(X)] € Z, which means that 7
defines a continuous function from K (X) to Z. It is also easy to see that 7 =i om.

We now note that the map is unique: if [ : K(X) — Z was another map such that [ o i = m,
then this immediately says that [[i[X] = m[i[X], so because the space is Hausdorff (see Exercise
1.3 of Assignment 2), [ = m. |

Just like with the Alexandroff compactification, some of the properties of this construction work
much better for special classes of spaces. We mention the following, without proof:

Proposition 5.3.16. Let X be a topological space. Then:
1. X = X if and only if the space is compact Hausdorff;
2. X is Tychonoff if and only if (5X,4) is a proper extension.

3. X is normal, non-compact and locally compact, if and only if (X, 4) is a strong compactifi-
cation.

In the case where X is Tychonoff, there is a space of particular interest: the space BX — X, called
the remainder is in that case closed, and hence has a rich topological and set-theoretical structure.
From the algebraic and set-theoretic point of view, the space fw — w in particular is a well-known
structure called the set of non-principal prime filters on w, and sometimes, the Parovicenko space.

"Unlike other mentions without proof, the proof of this result is not necessarily very difficult, but it would be long
in an already very long construction. We encourage the brave reader to try it as an exercise.
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In the latter, it has special connections with combinatorial set theory and forcing; in the former it
appears in the context of the duals of products of algebras. But this would take us much too far.

We also conclude by making a remark about the two kinds of compactifications we have just
seen. For locally compact Hausdorff spaces — for instance discrete spaces, or the reals — the two
compactifications we have seen are respectively the smallest and largest, with respect to embed-
dability. But there can be many more! For instance we have the following three compactifications
of the reals:

S; <[0,1] < BR.

Indeed, the circle, denoted by S1 can be shown to be homeomorpic to the Alexandroff compacti-
ficationof the reals; the interval [0,1] is a two-point compactification of the same space; and the
Stone-Cech compactification is in general much, much larger. The structure of all such compactifi-
cations has been the subject of intense research, and is related to a special kind of structure called
a proximity — another interesting direction in the area of point-free topology.

5.4 Exercises

Exercise 5.1. Prove the following form of the Heine-Borel theorem: the interval [0, 1], with the
subspace topology, is compact. Hint: Use a similar idea as in Example 5.2.6

Exercise 5.2. (*) Discuss the compactness of the following spaces (i.e., specify whether they are
compact, and if not, whether there are natural subclasses of compact spaces):

1. Finite spaces;

2. Spaces with the Cofinite topology (see Example 4.4.3);

3. Spaces with the Discrete topology;

4. Transitive and reflexive Kripke frames with the Alexandroff topology;
5. Linear orders with the order topology.

Exercise 5.3. Let f: X — Y be a continuous map where X is a compact space. Show that f[X]
with the subspace topology is a compact space.

Exercise 5.4. Give an example of a compact space that is not Hausdorff Hint: Consider the
Alexandroff topology on linear orders.

Exercise 5.5. Given an arbitrary topological space X show the following: X is compact if and
only if for every topological space Y, my : X x Y — Y is a closed map.

Exercise 5.6. Show that if X is a topological space, and U < X is an open subspace, then the
inclusion ¢ : U — X is a topological embedding.

Let X = N? be the set of pairs of natural numbers. We construct a topology on this space as
follows. A given U < X is open iff:

e U does not contain (0,0) or,
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(2,1)

Figure 5.3: A typical Open in the Arens-Forts Space

o U contains (0,0) and for all but finitely many m, U contains all but finitely many elements
from {(m,n) : n € w}.

Then we call this the Arens-Forts space. A typical open of the second kind is shown in Figure 5.3.
Exercise 5.7. Consider the Arens-Forts Space, U. Show that:

1. U is a normal space;

2. The space a(U) is not Hausdorff.

Hint: Show that the compact closed subsets can only contain finitely many points distinct from
(0,0).

Exercise 5.8. Let X and X; throughout be Hausdorff spaces.
1. Show that every compact space is locally compact.
2. Show that the converse inclusion does not hold Hint: Think of R.
3. Show that if X; is a family of locally compact spaces, then | |,_; X; is locally compact.

4. Show that if X is any Hausdorff and non-compact space, then a(X) is compact Hausdorff if
and only if X is locally compact.

Definition 5.4.1. Let X be a topological space. We say that X is a Baire space® if whenever

(Un)new is a countable collection of dense open sets, then ﬂn€w U, is a dense open set.

Exercise 5.9. (Tricky!) Show that:
1. The Baire space is a Baire space.

2. (For the set-theoretically inclined) Show the previous result as a consequence of the generic
filter existence lemma/Rasiowa-Sikorski Lemma: if (P, <) is a poset with a countable family
of dense subsets, there is a generic filter which intersects all of them.

81f you are wondering why anyone decided this was a nice name, in the presence of a space called “the Baire
space”, you are not alone.
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3.
4.

Show that a locally compact Hausdorff space is a Baire space.

Use the previous results to show the following: Q cannot be a countable intersection of open

sets.

Figure 5.4: Functions from Exercise on cartesian closedness

Exercise 5.10. (For the categorically inclined) The purpose of this exercise is to show that Top
is mot cartesian closed.

1.

Show that if Top was cartesian closed, then for every space X, the functor (—) x X : Top —
Top must preserve coequalizers.

Provide an explicit description of a coequalizer of two topological spaces. I.e., construct
coequalizers on the basis of the topological structures we have discussed. Hint: Think about

quotients.

Consider the sets Q, Z, R and the two maps ¢ : Z — R be the inclusion and j : Z — R given by
j(n) = i(n +1). Show that the coequalizer of these maps, coeq(i, j) (in Set) is the quotient
of R by the equivalence relation generated by the following: x ~ y if and only if both z and
y are integers.

Now consider the maps i X Q),j X @ : Z x Q — R defined in the obvious way. Show that the
set-theoretic coequalizer of these maps has the same underlying set as coeq(i, j) x Q.

. Show that there is a canonical map taking coeq(i x Q,j x Q) — coeq(i,j) x Q, which is a

bijection.

. Assume that there are two functions f,g : R — R with the following properties: both f(z)

and g(x) are strictly positive for all  but tend to 0 as x tends to plus and minus infinity;
we have f(z) = g(x) if z is an integer, and in this case their shared value is irrational. A
(stolen) example of two such functions is described in Figure 5.4. Let U be the subset of
R x @Q containing those points (r,q) where either ¢ < f(r) and ¢ < g(r) or f(r) < ¢ and
g(r) < q. Show that U is open.

. Show that ¢[U] is open in coeq(i, j) x Q but not open in coeq(i x Q,j x Q). Conclude that

Top is not cartesian closed.
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Chapter 6

Connectedness

As a final basic topological properties, we will briefly take a look at the idea of connectedness. In
the geometric sense, if we think of a plane, this is the property that one can, informally speaking, “go
from one point to another without falling”. In our epistemic analogy, this can likewise be captured:
an epistemic space is connected if there are no facts where both that fact and its negation is
knowable. The epistemological results of such a model would be very strange: whenever one a
fact would be knowable, its negation could not be knowable. For instance, this would imply that
propositions like “The sky is purple”, in so far as they were verifiable, could not be falsifiable. Thus,
connectedness once again nicely illustrates the different modelling requirements we might bring to
topology: a geometer will want connected spaces, whilst a philosopher might want them to be quite
heavily disconnected. We will take a look at both concepts.

6.1 Connected and Path-Connected Spaces

As with other concepts we have encountered so far, formalising the idea that the space should
be “whole” is a task that can be done in many ways. Following the intuition of the real line, one can
consider what happens if one takes out a single point x; this creates two sets (z,0) and (—o0, ),
which are both open and closed, something which in terms of intervals we know could not happen
before. So we propose the following as a first-definition:

Definition 6.1.1. Let (X, 7) be a topological space. We say that X is connected if the only clopen
subsets of X are X and (7.

We can give a trivial, but useful, reformulation of this definition:

Proposition 6.1.2. Let (X, 7) be a topological space. Then X is connected if and only if the only
continuous functions f : X — {0, 1} are constant.

Proof. Exercise. |

Example 6.1.3. The real line R is connected, and similarly, the subspace [0,1] is connected as
well. This follows from the “Intermediate Value Theorem”: for each continuous function f : R — R,
if f(a) < ¢ < f(b), then there exists some a < d < b such that f(d) = ¢. Using this, note that if
f:R —{0,1} was continuous, then this would violate the above assumptions.

No space with the discrete topology with more than one element is connected, whilst every
space with the indiscrete topology is connected.
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In fact we have that connectedness is a rather rare property for “small” spaces which are well
separated, as witnessed in the following criterion, which we state without proof:

Proposition 6.1.4. Let X be a normal connected space with at least two points. Then X is at
least of size 2%,

Additionally, connectedness can be decided on a dense subset:

Proposition 6.1.5. If X is a topological space, and A € X is a dense set which is connected in
the subspace topology, then X is connected.

Proof. Assume that U € X is a clopen subset; we are then to show that U = X or (X —U) = X.
Since U is clopen in X, it follows that both A n U and A n (X — U) are clopen in the subspace
A, hence either A € U or A < (X —U) (because A is assumed to be connected). But then since
both U and (X — U) are, in particular, closed in X, and, furthermore, A = X, we get that either
U=Xor (X —-U)=X - as required. [

Corollary 6.1.6. If a space is connected, then so is any compactification of that space.

However, another concept is perhaps more intuitively deserving of the name “connectedness”:
if I have two points in a space z,y, then I can connect them by a continuous path. Formally, given
a space X, we can think of a path from x to y as a continuous function:

f:0,1] - X
such that f(0) = z and f(1) = y. This follows by identifying the function with its image in X.

Definition 6.1.7. Let X be a topological space. We say that X is path-connected if whenever
x,y € X, there is some path p from x to y.

Indeed, we have that path-connectedness implies connectedness:
Proposition 6.1.8. Let X be a path-connected space. Then X is connected.

Proof. Assume that A and B are two non-empty clopen subsets of X, such that A U B = X and
An B = . Let x and y be respectively a point in A and B, and assume that p is a path from x
to y. Then consider p~[A]; since A is clopen, and p is continuous, p~![A] is clopen as well. But
then [0, 1] would contain a non-empty clopen different from the whole set, which is a contradiction
to [0, 1] being connected. [ |

However, in general the two notions come apart (See the Exercises). For subsets of the real
line, the two notions do coincide, and they do as well for finite topological spaces.

Connectedness can be seen as the first of a series of “invariants” of the space, which are somewhat
difficult to capture. The intuition is the following: if we want to describe something which is not
there — a hole in the space — how would we do so? The answer that we have given in this section is
the following: try to overlay a line on top of any two points. If this is not possible you have found
a whole. However, this cannot detect all kinds of holes as the next example shows:
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Example 6.1.9. Consider R — {(0,0)}, the so called punctured plane. We claim that this space
is path connected. Indeed, if (x,y) and (z,w) are two points, then either the unique line defined
by them does not pass through the origin, or it does; in the latter case, pick some third point (a,b)
such that the line from (z,y) to (a,b) does not cross the origin, and neither does the line from
(z,w) to (a,b); otherwise simply pick the unique line segment from (z,y) to (a,b) By composing
the two lines we obtain the desired path.

This situation is intuitively correct: whilst removing one point from the real line breaks the line
into two parts, removing a point from the real plane only creates a hole, as it is interwoven as one
continuous piece of fabric. However, it also seems intuitive that R? and the punctured plane are
not homeomorphic, and they are geometrically different — after all, one has a hole and the other
does not! The difficulty of saying exactly wherein the difference lies is the beginning of algebraic
topology, and opens way for the concepts of homotopy and homology, which are incredibly rich
fields of study. They have also in recent years become intimately related to logic, as recent work on
type theory casts these concepts as ways to formulate a new potential foundations for mathematics.

6.2 Total Disconnectedness and Total Separation

For logical purposes, as alluded in the preamble, it is often disconnectedness which tend to be
more interested in. To make the discussion smooth we will need some terminology:

Definition 6.2.1. Let X be a topological space. We say that a subset A < X is a connected
component if A is connected, and whenever A € B € X, then B is not connected. We denote by
Con(X) the set of connected components of X.

Definition 6.2.2. Let X be a topological space. We say that X is totally disconnected if whenever
A < X and A is connected, then there is € X such that A = {z}.

Example 6.2.3. Any discrete space is totally disconnected, and no indiscrete space with more
than one element is totally disconnected.

Just like with the case for connectedness, one can argue that the above concept does not do
justice to our epistemic intuitions regarding when a space should be disconnected. Intuitively, as
mentioned, we want to say that if two worlds are distinct then there is some decidable proposition
which can distinguish between them. It is not clear how the above concept can exactly capture
this. Hence we need something slightly different:

Definition 6.2.4. Let X be a topological space. Given two points x,y € X, we write x =qg¢ y if
and only if for all clopens U € X, z e U if and only if y e U.

We say that a subset A © X is quasi-connected if for each x,y € A, x =gc y. We say that
A € X is a quasi-component if whenever A € B, then B is not quasi-connected. We denote by
QCon(X) the set of quasi-components of X.

We say that X is totally separated if whenever A is a quasi-component, then for some x € X,
we have that A = {z}.

Note that if x € X, and [z]con is the connected component containing z, and similarly [2]gcon
is the quasi-component containing it, then [z]con S [Z]gcon: indeed if  and y can be separated by
a clopen set, then they cannot lie in the same connected component. In fact we have:
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Proposition 6.2.5. Let X be a topological space. Then we have that:
1. If X is totally separated, then X is totally disconnected.
2. If X is compact Hausdorff, then [z]con = [2]gcon-

3. If X is compact and Hausdorff, then it is totally disconnected if and only if it is totally
separated.

Proof. (1) is implied by the above remark: if we have that a space is totally separated, and A was
a connected component containing z, then A = [&]con S [%]gcon = {T}-

For (2), assume that our space is compact Hausdorff. Assume that A = [z]gcon is a quasi-
component; note that A is then closed, since it is the intersection of all clopen sets containing x,
namely:

A= () s
S is clopen,zeS
Now assume that A = B u C where B and C are clopen in A, disjoint, and z € B. Then we will
show that C' = ¢J. Now since A is closed, then B and C' will be closed in the original space X.
So since they are disjoint closed subsets, we have by Proposition 5.3.1 that we can separate them
using open neighbourhoods U 2 B and V 2 C. Hence:

ScUuV

S is clopen,zeS

By compactness, this implies that for finitely many clopen sets:
S =8n.nS,cUuV

Now consider D = S" n U. Note that D is open, and also D = S" — V (since if z € ' n U,
then x € S’ and not in V, because they are disjoint, and if x € S" — V', then x € U as well).
So D is closed, and hence D is clopen. Since z € D, it follows that [z]4con © D. But then
AnCcDnNC =5 nUnC=¢. Hence we have that A is connected.

(3) Follows from (2) immediately. |

Using the former we can give some interesting examples of spaces which are totally disconnected.

Example 6.2.6. The Cantor space is totally disconnected; to see this, note that if x and y are
distinct infinite binary sequences, then they must disagree on some initial segment, say s; then
x € C(s) whilst y ¢ C(s); but as argued in Example 5.2.6, we have that the complement of C(s) is
a finite union of basic opens, and hence, is open as well, so C(s) is clopen.

The former example is not innocent. It provides the basics of a concept which has been pivotal
for contemporary logic:

Definition 6.2.7. Let X be a topological space. We say that X is a Stone space if it is compact,
Hausdorff and totally disconnected.

In some textbooks one will find an equivalent characterisation:
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Lemma 6.2.8. Let X be a topological space. Then X is a Stone space if and only if it is a compact
Hausdorff space generated by a basis of clopen subsets.!

Proof. If X is a compact Hausdorff space generated by a basis of clopen subsets, and x # y, then
since the space is Hausdorff, there are opens U 3  and V' 3 y which are disjoint, and U = | J,; U;
where the U; are clopen; so x € U; and y ¢ U; for some 7. Hence X is a Stone space.

Now assume that X is a Stone space. Let U be an arbitrary open subset, fix x € U and let
y ¢ U. Then by the above proposition, since X is totally disconnected, there is some clopen x € V.,
and y ¢ V, ,. Hence:

X-Uc|JX—Vay
y¢U
By compactness, and noting that unions of clopens are clopen, it follows that X —U < X — V.
Then we have that V, € U. Thus:
U=|Jv

zelU
Which shows that every Stone space is generated by a basis of clopens. |

Example 6.2.9. Recall from Chapter 5 that we considered, for a discrete set X, its Stone-Cech
compactification. One can show that 5X is in fact a Stone space. Using the previous lemma, we
need only verify that 58X is generated by a basis of clopens. But notice that for each U € X:

X —¢U) = (X -U)
which follows since the filters are prime.

Stone spaces are prime spaces for logic. One encounters them in almost all areas of mathematical
logic that deal with model-theoretic questions, and even some which are mostly proof-theoretic.
Since their theory will be developed in all these other settings, we will not say more about them
here.

However, as we have continued to emphasise, our intuitions about disconnectedness, just like
our intuitions of connectedness, should be taken with a certain degree of care.

Example 6.2.10. In Example 3.2.4 we discussed a homeomorphism of the Cantor space into the
interval [0, 1]. When seeing it as its image in the reals, it is usual to call it simply the Cantor set,
denoted C. An alternative construction of this set proceeds as follows: starting with [0, 1], consider
the interval (%, %), and remove it; from each resulting closed interval remove again the middle third
interval. Proceeding in this way recursively for each resulting subinterval, in the limit we obtain a
set canonically called the "Cantor set”.

Now consider the following topological space. In R?, take the interval I? = [0,1] x [0,1]. In
this space, consider the point p = (3, ). For each c € [0, 1], let L(c) denote the line segment in this
interval connecting (¢,0) to the point p. For each ¢ € C, if ¢ is an endpoint of a deleted interval,
denote by X. = {(z,y) € L(c) : y € Q}; for all other ¢ € C write X, = {(z,y) € L(c) : y ¢ Q}:

U
ceC

equipped with the subspace topology. We call this space the Knaster-Kuratowski Fan, as depicted
in Figure 6.1.

1This is often named zero-dimensionality.

62



05

0.45

04

0.35

0.3

>0.25

0.2

0.15

0.1

0.05

Figure 6.1: Kuratowski-Knaster Fan (Credit: Wikipedia)

Denote this space as K. One can show (though it is quite hard) that K is connected. However,
if we look at K — {p}, this space becomes totally disconnected: if we have that A is a connected
component, then it must be contained entirely in a line L(c), since otherwise no path from [0, 1]
would be continuous (and we recall that for subsets of the reals, path-connectedness is the same as
connectedness). But we have that X, is either Q or R — Q, both of which are totally disconnected
subspaces.

Additionally, this space is not totally separated either. To see this, note that the sets L(c) n
K — {p} are the intersection of clopen sets

6.3 Isolation and Extremal Disconnectedness

Let us now take a small detour to analyse a class of spaces which relate to Stone spaces and
other notions of disconnectedness. To understand it, fix R, the reals with their topology. In general,
the subsets of the reals are easy to draw in big clusters. But sometimes we might run into a picture
such as the following:

Indeed, it seems intuitive that the leftmost point is “isolated” from the remaining ones, and this
should make a difference when considering, for instance, how far apart two points are, as perhaps
we do not want to consider such an “outlier” to be part of the set for those purposes. Hence we
formalise this concept of isolation:

Definition 6.3.1. Let (X, 7) be a topological space, and let A € X. We say that z is an accumu-
lation point of A if x € cl(A — {x}). We denote the set of accumulation points of A by d(A). We
say that a point x € A is isolated if z € A — d(A). We denote by iso(A) the set of isolated points
of A.

63



Figure 6.2: Isolated point (credit: Wikipedia)

Proposition 6.3.2. Let (X, 7) be a topological space with a basis 5. Then:
1. x € X is isolated in X if and only if {z} is open.

2. Given A € X, z € d(A) if and only if whenever U is a basic open neighbourhood of z, then
U—{z}nA#J.

Proof. (1) If x is isolated in X, then by definition = ¢ cl(X — {z}); hence clearly cl(X — {z}) =
X — {x}, which shows that {z} is open. The converse is similar.

(2) Assume that = € d(A), and let U be a basic neighbourhood of x. Since z € cl(A — {z}), we
have that U n A — {z} have non-empty intersection. The converse follows the same way. |

Definition 6.3.3. Let X be a topological space. We say that X is scattered if each non-empty
subset A € X contains a point isolated in A. We say that X is crowded if X has no isolated point.

Scattered spaces have found many uses in topology and logic:
e They provide models for provability logics, such as GL and GLP;

e They are intimately connected to the order-theoretic properties of structures like the ordinal
numbers.

e They provide basic structures, and form the backbone of many complex order-theoretic and
topological structures.

As an example of the interaction of these notions, we have the following result, due originally
to Brouwer:

Proposition 6.3.4. The Cantor space 2% is the unique topological space which is:
1. A Stone space;
2. Crowded;

3. The basis of clopen sets has the property that any two clopen sets are homeomorphic.
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Looking at such a result prima facie, it might seem like a very difficult result; but as it turns out,
one can give multiple, relatively easy model-theoretic proofs of this fact; and one can give a very
elementary universal algebraic proof of the same fact, when the right tools have been developed.

Let us return briefly to a notion previously introduced. The operation d(A) is called the derived
set operator, and it has an interesting connection both with modal logic, provability logic, and set
theory. Using it we can define another interesting notion, called the “co-derived set”, for lack of a
better term:

7(A) = X — d(X — A)

Proposition 6.3.5. Let X be a topological space. Then for each x € X and A € X, we have that
x € 7(A) if and only if there is an open U, such that x € U and U — {z} < A.

Proof. First assume that there is some open U such that z € U and U — {z} < A. This means that
U—{x} n X — A= J; by the previous proposition, this means that = ¢ d(X — A). Conversely, if
x ¢ d(X —A), that means that there is is an open neighbourhood of x such that U —{z}n X —A = ¢,
implying the result. |

The former operator has been considered in some epistemic settings as implementing a notion
of belief. To see how this makes sense, first note that we have the following meaning for the interior
operator:

o We have that int(U) is the largest open set contained in U. Hence it makes sense that this
is the most general proposition we can verify which implies U.

Because of this, we can attribute to this operator a modal flavour. Indeed, given a world x, we
can write:

z -OU

To mean that x € int(U), and we can say that at x we “know” U, since we not only are in U, but
we can verify it. In similar terms, we can write:

zI+1U

if and only if x € 7(B). If we read the derived set operator, as some do, as saying that = |- d(A) if
and only if all of the facts true at U are consistent with A, then z |- 7U if it is not consistent to
believe that not U.

If one wants to now produce models where [JU and 7U have the above meaning, there are some
natural considerations in mind. For instance, if we consider a Ti-space X, we have that for any
world z € X, X — {z} is open. And indeed, we have that:

d({z}) = &

so, 7(X — {z}) = X. Hence at every world we must have that z |- 7(X — {x}). In other words, at
every world the agent must believe that the actual world is not the case. This is a very undesirable
situation, which the next definition fixes.

Definition 6.3.6. Let X be a topological space. We say that X is a DSO-space if X is dense-in-
itself and for each A € X, d(A) is open.
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For an example of such a model, consider a set X with the cofinite topology (see Example 4.4.3).
We have that if A is any subset, then we can compute d(A): if A is finite, then d(A) = ¢J (since
we can always find neighbourhoods avoiding all elements in A except for x); and if A is infinite,
d(A) = X (since if x € X, and U is any open neighbourhood of z, it must be cofinite, and hence
meet A in some location). Hence the only derived sets are open, which means that the space is
DSO.

Similarly epistemic considerations can lead us to consider another rather peculiar class of topo-
logical spaces. In a similar vein to our treatment of the interior operator, we can write:

z - QU

to mean that =z € cl(U), and say that all of our knowledge is “consistent with U”, by similar
reasoning as above. Hence nothing stops us from considering the following;:

cl(int(U)).

Under the above modal epistemic reading, when shall we have that =z | Q[JU? It seems that
this should happen precisely when all of our knowledge is consistent with our knowing of U. This
has the flavour of a form of belief, and indeed, was introduced by Robert Stalnaker as what is
called “strong belief”. Hence, if we want to model this, we would want the following scheme to be
respected:

Olp — CO0p

i.e., if we strongly believe that p, then we know that we strongly believe that p. This leads to the
following form of disconnectedness:

Definition 6.3.7. Let X be a topological space. We say that X is extremally disconnected ? if
whenever U is an open subset, then ¢l(U) is open.

Our allusion to a sort of escalation is justified in the following:

Proposition 6.3.8. Let X be a Hausdorff extremally disconnected space. Then X is totally
disconnected.

Proof. Assume that x # y; let x € U and y € V be disjoint neighbourhoods. Consider cl(U). We
have that x € cl(U), and if y € ¢l(U), then the neighbourhood V' of y must intersect U, which is
false. Hence by extremal disconnectedness, cl(U) is open, and it is also closed, hence, it is clopen.
This shows the result. |

In fact we have already encountered some extremally disconnected spaces.
Proposition 6.3.9. If X is a discrete space, the space SX is extremally disconnected.

Proof. Recall that a basis for 5X is given by the sets of the form:

o(U)={zxepX :2eU}

2This is not a typo: the root word is extremal and not extreme. Though this is indeed a pretty extreme form of
disconnectedness.
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Now assume that V € X is an open set. By assumption we have that:

V= U o(Ui)

el

So it suffices to show that the closure of an arbitrary union of basic opens is open. Indeed, we will

show something stronger:

e i) = (i)

el el
One inclusion is clear, since (| J,.; U;) is closed. For the other direction, assume that x has some
neighbourhood ¢(V'), such that ¢(V') n¢(U;) = & for each i. Then note that then V nU; = ¢ for
each i: indeed, if not, then V' n U; # & implies that {V n U} is a non-trivial filter base; so by the
Prime filter theorem, we could extend this to a prime filter containing V' n U;, which would then
contain both V and U;.

Hence if z € o(|J,.; U;) we would have that:

xegp(V)rwp(UUi) — VﬁUUiex — UUimVex
el el el
But we have just shown that the latter is the empty set, a contradiction. So we have that indeed
x ¢ p(U;ey Ui), as desired. [ |

On the other hand, our previous warnings regarding confusing notions become even graver for
extremal disconnectedness, as the next example shows:

Example 6.3.10. Let X again be a set with the cofinite topology. Then first note that X is
connected: for any set U € X, if U is clopen it is clear that U = X or U = ¢¢J. However, X is also
extremally disconnected: if we look at any open set, its closure is the whole space.

Extremal disconnectedness, despite its seeming exotic nature, turns out to be quite an important
property in topological spaces — for instance, they are the projective objects in the category of
compact Hausdorff spaces, as shown by Gleason. Many more connections could be laid out, of
course, but we conclude here.

6.4 Exercises

Exercise 6.1. Let X and Y be two topological spaces. Assume that f: X — Y is a homeomor-
phism. Show that X is connected if and only if Y is connected.

Definition 6.4.1. Let L and T be two linearly ordered sets. We define the lezicographic order on
L x T as follows: (a,b) <jez (x,y) if and only if a <7 x or a = x and b <7 y.

Given two linear orders L and T, we denote by L + T the sum of linear orders on L u T as
follows: (a,i) < (b,j) for i,j € {0,1} if and only if either i =0 and j =1 or i = j and a < b in the
respective order.

Given a linear order L, we denote by L° the converse linear order: = <,, y if and only if

Y <op T.

Exercise 6.2. The purpose of this exercise is to show that connectedness does not imply path
connectedness.
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1. Show that R is order-isomorphic to the following order ((0,1) x w)?” + o+ ((0,1) x w). Deduce
that R as a topological space is homeomorphic to the order topology on the same set.

2. Consider the set L given as follows:
o+ ((0, 1) X wl)Op + o+ ((0, 1) X wl) + o
Show that the order topology on L is connected.

3. Show that L is not path connected. Hint: Consider the points at extremities.

Exercise 6.3. Let X and Y be topological spaces. Show that if both X and Y are connected then
sois X x Y.

Exercise 6.4. Let L = (L, <) be a linearly ordered set. We say that L is dense if whenever a < b
then there exists some ¢ such that a < ¢ < b. We say that L is a linear continuum if whenever
S < L is a subset, and S is bounded above, then there exists a least upper bound.

e Show that the order topology on R coincides with the Euclidean topology.

e Show that an arbitrary linearly ordered set is a linear continuum if and only if it is connected.

Exercise 6.5. Let X be a topological space. Given a subset A = X we consider the following
(transfinite) sequence over all ordinals:

do(A) = A

da1(A) = d(d(A))

dr(A) = | | ds(A)
B<A

where A is a limit ordinal and d(A) is the collection of accumulation points.

o Give an example of a space X and a subset A such that da(A) # d(A). Give another such
example such that dy,41(A) # d,(A).

 Show that if a space X is scattered, then there exists some  such that dg(X) = &.

Exercise 6.6. Let L be a linear order. We say that L is scattered if there is no subset S € L such
that S is densely ordered (i.e. whenever a < b € S then there is some ¢ € S such that a < ¢ < b).
Show that then the order topology on L is scattered. Moreover, show that the converse implication
does not hold.

Definition 6.4.2. Let X be a topological space. We say that X satisfies the Tp axiom if and only
if for each x € X, we have that {z} is an open subset in {z}.

Exercise 6.7. Show that the following are equivalent for a topological space X:
1. X is TD;

2. For each z € X there is an open U such that U — {z} is open as well;
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3. For each subset S in X, d(d(S)) < d(S).
Exercise 6.8. Recall the Cantor space 2¢ and the Baire space w”.

1. Show that there are bijections between the sets 2¢, R and w* Hint: Think about encoding
subsets of the natural numbers, and decimal expansions.

2. Show that there can be no homeomorphism between any of these three sets. Hint: Find
topological properties which are distinct between these sets.

Exercise 6.9. (Gluing lemma) Let X be a topological space. Suppose that (U;)er is a collection
of open subsets of X, and f; : U; — Y are continuous functions, such that:

e For each i,j, fl fUZ N Uj = fj fUz N Uj.
Show that then there exists a function f: X — Y such that for each i, f1U; = f;.

Definition 6.4.3. Let X,Y be topological spaces. We denote by Fun(X,Y) the collection of
partial functions from X to Y, i.e., functions which domain is a subset of X. We say that a set
S € Fun(X,Y) is a presheaf if it satisfies the following:

1. For each f € S, dom(f) is open in X;
2. If U € V are open sets and f € S is such that dom(f) = V then dom(f)|V € S;
We say that a presheaf S is a sheaf if it further satisfies:

1. (Locality) If U is an open set, and U = | J,.; U;, then: if f,g € S are such that dom(f) =
dom(g) = U and fU; = g|U; for each i, then f = g.

2. (Gluing) if U = | J,.; Ui and f; € S are such that dom(f;) and for each i, j:

iel
filvinu; = filuinu;
Then there exists some f € S such that fy, = fi.
Exercise 6.10. Let X and Y be two topological spaces.
1. Show that the set Cont(X,Y") of continuous functions from U < X open to Y, is a sheaf.

2. Let f:Y — X be a continuous function. Consider Sec(f) the following set:
Sec(f)={s:U—->Y :Uc< Xisopen, fos=idy}
Show that Sec(f) is a sheaf.

3. Let X be a topological space. Consider the set Const(X) of constant partial functions on X,
i.e., functions defined on U < X such that U is open. Show that Const(X) is a presheaf but
not in general a sheaf.
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Chapter 7

Further Directions

What we have just covered constitutes the very basics of the field of general topology. Topology
then develops in a number of different directions. We list here a few which are relevant for logic
and which you might want to choose as a topic to investigate.

Metric Spaces and Normed spaces

The way we presented it topology appeared already in its present state of deep abstraction.
However, this does not reflect in any way the historical development of the discipline: originally,
the field emerged with the goal of studying the space R and its close analogs: the spaces R", called
the Euclidean spaces; the spaces ¢, of sequences; amongst others.

Of the many possible properties one might want to generalise, two seem particularly important:
on one hand the notion of length gives rise to the notion of a norm, and the possibility to represent
different kinds of “points” (called vectors) as arrows having a specific size; on the other hand, the
notion of distance, gives rise to the notion of a metric, and the possibility to analyse how far apart
two points might be.

In fields close to logic, metric spaces and normed spaces appear frequently when the need
arises for a notion of “gradience”. Examples include areas at the intersection of logic with fields
like probability theory or information theory; Artificial Intelligence, where the key techniques of
Machine Learning make use of vector spaces to operate; and also in philosophical applications such
as Gardenfors’ theory of conceptual spaces.

In mathematical logic applications, metric spaces and normed spaces appear naturally in model
theory, where there is a longstanding quest to construct strong logical systems which allow the
description of these geometric settings. Also in model theory the setting of non-standard analysis
has been heavily studied as an alternative foundation for the real line.

Algebraic Topology
On the other side of classical mathematical disciplines which build on topology, algebraic topol-
ogy is based on the following, seemingly innocent question:

How do you formally describe a hole in space?

We have seen a small glimpse of this through the notion of connectedness. However, this notion is
insufficient to capture many important properties: if we consider the topological space R — {(0,0)}
then it is clear that this space has a hole (even if a very small one); the existence of this hole means
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we cannot take a continuous arc and shift it around the origin. So more sophisticated tools are
needed; this is where tools from algebra come in, namely group theory.

One of the fundamental concepts of this area is the idea of a homotopy. This consists of a
collection of continuous functions, which intuitively means that one can transform the functions
into each other in a continuous way. This concept has in the last few years become of central
importance in type theory, due to the development of so called homotopy type theory. Many other
concepts of algebraic topology appear naturally in this area of logic.

Set-Theoretic Topology

Over the course of these notes we were careful to avoid any set theoretic problems as much as is
reasonable. However, these are extremely abundant in the kind of topology we do here. The field
of set-theoretic topology is specifically concerned with addressing problems such as:

o How is the size of a space related to the size of its basis?

» Does the existence of specific combinatorial properties on a space (i.e., linear orders or graphs
of subsets; collections closed under some closure conditions) imply that the space must satisfy
some compactness or separation properties?

e Which kinds of properties of spaces are independent of the axioms of ZFC?

This area is also deeply tied to the study of specific algebraic structures such as complete
Boolean algebras, and to other big areas of set theory: the theory of large cardinals, the theory of
determinacy, and the theory of forcing. For instance, the study of the space Sw, and in particular
its subspace Sw—w (the so-called non-principal prime filters) is to this day an active field of research.

Point-free Topology

On the opposite side of the spectrum from set theoretic topology, the field of pointless topology
is concerned with approaching topology in a way that is inherently distinct from the one we took
here; rather than focusing on sets, it emphasises the collection of open subsets, and analyses its
algebraic structure in so far as it can recover properly geometric facts.

The key objects of study of this field are locales, which form complete Heyting algebras, their
functions, and their transformations. Integral to this endeavour is a duality between spaces and
algebras, which takes specific filters on this algebra to be the points of our space. Moreover, many
of the problems faced have to do with the fact that such an algebraic approach is generically
speaking much more general than the set theoretic one, and thus requires cleverly chosen axioms
to ensure important results hold.

The core of the methods is substantially distinct from topology, though the ideas are very often
illuminating in both directions. The key problems of the field are the question over how to construct
models for topology, how to present them logically, and how to develop these tools to capture an
increasingly large and varied set of topological concepts.

Modal Logics of Space

Perhaps the most immediately logical application of topology to logic comes from the connec-
tions we laid out above, originally introduced by McKinsey and Tarski, between topological spaces
and specific logics, namely, the S4 modal logic system. In the wake of this, many other areas of
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logic have introduced their own version of a “topological semantics”, but the original relationship
between modal logic and topology remains a great source of interest and commands active interest.

In particular, the question of how to characterise the modal logic of specific classes of spaces,
and conversely, find classes of spaces for which specific logics are complete, provides both theo-
retical and practical motivation. For instance the concept of an extremally disconnected space has
been proposed in the setting of logics for full belief, and is intimately related to the modal logical
system S4.2. In addition to this, the many connections between these topological semantics and
the field of learning have (and continue to) provide many insights into the role of logic in artificial
intelligence, in the age of Machine Learning.

Descriptive Set Theory

Lastly, we mention another very active area of set theory which is intimately tied to questions
of topology. The driving motivation of descriptive set theory is the classification and analysis of
various kinds of subspaces of the real line and its generalisations, as well as the development of basic
analysis in these large settings. Due to a number of remarkable connections between topological
hierarchies (namely the Borel Hierarchy) and computability problems, the field also ties to recursion
theory and various notions of effectiveness.

7.1 End Notes

(1) [Personal Take by Rodrigo]: An explanation of the term : it has often struck me
that certain terms in mathematics have the gift of eliciting fear and awe simply through the way
they sound. In this respect, ultrafilters come across to me as particularly grave offenders, and all
ultra-prefixed words, like ultraproducts. On the other hand, I have found people find the concept
of a filter is a fair bit less intimidating, although the only real technical difference between them
is the addition of a complementation law. Hence I have chosen (under the suggestion of Simon
Lemal) the term to see if it is possible to make the opposite be true. Rather than feel
an ominous tone set in when reading

ulteafilter,

the reader feels a warm and fuzzy feeling inside when a proof involves the concept of a

I hope that the reader concurs.
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