INTRODUCTION TO TOPOLOGY IN AND VIA LOGIC Kick-Off Meeting

Rodrigo N. Almeida, Søren B. Knudstorp January 5, 2024

- Who are you? (in a non-existentialist way)
- What is your background?
- Why are you interested in topology?

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course.
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - · Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - · Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - · Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - · Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - · Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - · Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course.
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - · Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course.
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - · Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course.
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course.
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

- Six lectures on core concepts of general topology
 - Given by Rodrigo and Søren.
 - On Mondays and Fridays of first three weeks, at 11am.
 - Hybrid and will be recorded.
- Threee tutorials on the contents of the course.
 - Given by Amity.
 - On Wednesdays at 17h00.
- Group presentations on more advanced topics
 - Given by you, the students.
 - On Tuesdays, Wednesdays and Fridays of fourth week.
 - Aimed at your fellow students.
- Three HW assignments
 - Similar to HWs in courses like MPML or IML.
 - Published on Jan 10, Jan 17, Jan 24 respectively.
 - Deadline is Feb 9.
 - Done in teams.

Schedule

Week 0	• Jan 5, Fri, 11am: Kick-off meeting

* STC, waiting for confirmation.

Week 0	• Jan 5, Fri, 11am: Kick-off meeting
Weeks 1-3	 Mon, 11am: Lecture; Wed: Assignment published (covering material of that week); Wed, 17h00: Tutorial (by Amity). Fri, 11am: Lecture.
Week 3-4	 Guest lecture (date TBD) Team consultations.

* STC, waiting for confirmation.

Week 0	• Jan 5, Fri, 11am: Kick-off meeting
Weeks 1-3	 Mon, 11am: Lecture; Wed: Assignment published (covering material of that week); Wed, 17h00: Tutorial (by Amity). Fri, 11am: Lecture.
Week 3-4	 Guest lecture (date TBD) Team consultations.
Week 4	• *Jan 31, Feb 1, Feb 2: Team presentations (by you, in teams)
Week 5	• Feb 9: Deadline for assignments.

* STC, waiting for confirmation.

What is Topology About: A Bit of History

A long time ago:

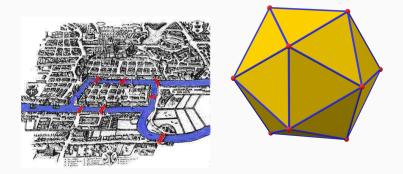


Figure 1: The Humble Origins of Topology

What is Topology About: A Bit of History

But then things got wild:

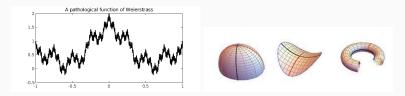
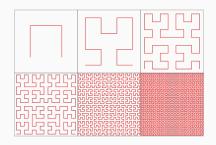



Figure 2: ???????

It was necessary to develop a general theory. This was done in stages.

It was necessary to develop a general theory. This was done in stages.

The eventual formalism that was settled upon is very far removed from our geometric intuitions. But this opens room for different intuitions: epistemic intuitions. It was necessary to develop a general theory. This was done in stages.

The eventual formalism that was settled upon is very far removed from our geometric intuitions. But this opens room for different intuitions: epistemic intuitions.

Our approach will try to emphasise the epistemic angle as a way to bootstrap our understanding, but we will also discuss the geometric approach. A space is a pair (X, τ) where $\tau \subseteq \mathcal{P}(X)$ is a collection of *possibly knowable facts*. These are facts which can be verified – there is some procedure to generate them. Their complements are falsifiable statements. A space is a pair (X, τ) where $\tau \subseteq \mathcal{P}(X)$ is a collection of *possibly knowable facts*. These are facts which can be verified – there is some procedure to generate them. Their complements are falsifiable statements.

Not all facts are knowable (e.g. what is the precise velocity and position of a particle in a quantum field). Not all facts are falsifiable.

A space is a pair (X, τ) where $\tau \subseteq \mathcal{P}(X)$ is a collection of *possibly knowable facts*. These are facts which can be verified – there is some procedure to generate them. Their complements are falsifiable statements.

Not all facts are knowable (e.g. what is the precise velocity and position of a particle in a quantum field). Not all facts are falsifiable.

We want to think of τ as the "recursively enumerable" facts; those $A \in \tau$ such that $X - A \in \tau$ we say are decidable facts.

1. Topological Spaces: collections of epistemic worlds; generalized spaces;

- 1. Topological Spaces: collections of epistemic worlds; generalized spaces;
- Continuity: Transforming epistemic settings; transforming spaces;

- 1. Topological Spaces: collections of epistemic worlds; generalized spaces;
- Continuity: Transforming epistemic settings; transforming spaces;
- 3. Separation: Being able to tell apart two worlds using a proposition; being able to distinguish points using opens;

- 1. Topological Spaces: collections of epistemic worlds; generalized spaces;
- Continuity: Transforming epistemic settings; transforming spaces;
- 3. Separation: Being able to tell apart two worlds using a proposition; being able to distinguish points using opens;
- 4. Compactness: Being able to describe all worlds using finite amounts of information; having the space be appropriately "complete".

- 1. Topological Spaces: collections of epistemic worlds; generalized spaces;
- Continuity: Transforming epistemic settings; transforming spaces;
- 3. Separation: Being able to tell apart two worlds using a proposition; being able to distinguish points using opens;
- 4. Compactness: Being able to describe all worlds using finite amounts of information; having the space be appropriately "complete".
- 5. Connectedness: Disconnectedness is epistemically the capacity to have enough "decidable" propositions; connectedness is geometrically having the space be accessible through paths (or something close enough).

Thank you! Questions?