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Plan for the Day

• Fluffy Filters
• Compactness in spaces.
• Compactness and Filters.
• Compact Hausdorff Spaces.
• Introduction to compactifications.

1



Recap

Theorem

Let pX, τq be a topological space. Then the following are equivalent:
1. X is Hausdorff;
2. For each filter base F , F converges to at most one point;

But what about existence?
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A Logical Intuition

Recall our canonical topological space X “ MCS, whose elements are
maximally consistent sets, with the basis given by:

tAϕ : ϕ a formula u where Aϕ “ tx P MCSpP q : ϕ P xu.

Now suppose that S is a consistent set of formulas which is closed under
conjunction. Let ΓS be given as

ΓS “ tAϕ : ϕ P Su.

Then ΓS is a filter base. By Lindenbaum’s lemma, we can extend S to a
maximally consistent set of formulas, i.e., there is some x P X such that
x P

Ş

ΓS .

Key Property: if we have a filter base, then it can be extended to a filter base
which converges to a point. The way to go about this goes via fluffy filters.
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Fluffy Filters

To model this we need special kinds of filters:

Definition
Let X be a set and F a filter. We say that F is a prime filter (or sometimes a
fluffy filtera) if it satisfies the following:
• For each S Ď X , either S P F or X ´ S P F .

aSee the end notes of Chapter 7 for an explanation of this nomenclature.

Example: for each x, the collection F pxq

tU Ď X : x P Uu

is a prime filter. But in general there could be many more!
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Extending Filters

Theorem (Tarski, Prime Filter Theorem)
Let X be a set and F a filter base on X . Then there exists a prime filter
G Ě F .

Proof: A proof is in the notes. We will not do it here, as the technique is
mostly lattice theoretic, and we will only need the statement (but in MSL this
is proven in full).
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Compactness

We now have enough to discuss another crucial topological property.

Definition
Let X be a topological space, and A Ď X . Given a collection pUiqiPI of open
sets, we say that this is an open cover of A if:

A “
ď

iPI

Ui.

Given such a cover, we say that a subcollection pUjqjPJ for J Ď I is a
subcover if it is a cover of A. We say that a cover is finite if I is finite.

Definition
Let X be a topological space. We say that X is compact if whenever pUiqiPI

is an open cover, there exists a finite I0 Ď I such that pUjqjPI0 is a subcover
of X .
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Compact Spaces

Proposition
Let pX, τq be a topological space with a basis B. Then a set is compact if and
only if every cover of X by basic open sets has a finite subcover.

Proof: See Blackboard.

Example
Negative example: R is not compact.
Positive example: the Cantor space is compact. See blackboard.

What about subbases?

Theorem (Alexander Subbase Theorem)
Let X be a topological space with a subbasis S . Then X is compact if and
only if every cover of X by subbasic opens has a finite subcover.
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Filters and Compactness

Let us reformulate our criterion for compactness a bit:

Definition
Let X be a set, and S Ď PX a family of subsets. We say that S has the finite
intersection property if whenever A0, ..., An P S then A0 X ... X An ‰ H.

Lemma
Let X be a topological space. Then X is compact if and only if, whenever F
is a family of closed subsets with the finite intersection property, then
Ş

F ‰ H.

Proof: See Blackboard.
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Filters and Compactness (cont.)

Proposition

Let pX, τq be a topological space. Then X is compact if and only if whenever
U is a fluffy filter, then U converges in X .

Proof: See Blackboard.
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Break: ˘ 10 minutes.
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Compact Subsets

A very important theme when dealing with compact spaces is the notion of a
compact subspace.

Definition
Let X be a topological space. We say that A Ď X is a compact subset if A is
compact as a topological space with the subspace topology.

Lemma

Let X be a compact topological space. If A is closed, then A is a compact
subset.

Proof: Exercise (worked out in the notes).
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Compact Hausdorff Spaces

When we have compactness and Hausdorff separation, we can get in general
much stronger results than with either property separate:

Theorem

Let X be a topological space. If X is compact and Hausdorff, then:
• X is Normal;
• The compact subsets are precisely the closed ones.
• If f : X Ñ Y is a continuous bijection from a compact to a Hausdorff
space, then f is a homeomorphism.

Proof: See Blackboard.
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Compactification

Given the previous theorem, one would want to find some principled way of
turning spaces into compact Hausdorff ones. In general, we already need
some separation to start with. But we can add compactness.

Definition
Let X be a topological space. We say that a set A Ď X is dense if A “ X .

Definition
Let X,Y be topological spaces such that f : X Ñ Y is a continuous
function. We say that the pair pY, fq is a topological extension of X if f rXs

is dense in Y . We say that an extension is a decent compactification if:
• Y is compact;
• f is a homeomorphism;
• X is non-compact.
• f rXs is open in Y .

(Guess: Not all compactifications will be decent, but we will not be too
worried!)
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Example

Consider the space N with the discrete topology. No infinite discrete space is
ever compact. But we can compactify this in a natural way:

0 1 2 ... ω

Figure 1: One-point compactification

We add a point and declare that a subset S is open in the new space if and
only if it was already open, or it is a cofinite subset containing ω. Then this
becomes a compact space, denoted αpωq or the Alexandroff compactification
of the naturals.
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Next Lecture

• Connectedness.

• Disconnectedness
• Stone spaces.
• Scattered spaces.
• The End?
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Thank you!
Questions?
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