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Plan for the Day

• Announcements
• Compactifications.
• Connectedness.
• Disconnectedness.
• Extremal Disconnectedness.
• The End?
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Recap

Definition
Let X be a set and F a filter. We say that F is a prime filter (or sometimes a
fluffy filtera) if it satisfies the following:
• For each S Ď X , either S P F or X ´ S P F .

aSee the end notes of Chapter 7 for an explanation of this nomenclature.

Theorem (Tarski, Prime Filter Theorem)
Let X be a set and F a filter base on X . Then there exists a prime filter
G Ě F .
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Recap

Definition
Let X be a topological space. We say that X is compact if whenever pUiqiPI

is an open cover, there exists a finite I0 Ď I such that pUjqjPI0 is a subcover
of X .

Theorem

Let X be a topological space. If X is compact and Hausdorff, then:
• X is Normal;
• The compact subsets are precisely the closed ones.
• If f : X Ñ Y is a continuous bijection from a compact to a Hausdorff
space, then f is a homeomorphism.
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Recap: Compactifications

Definition
Let X,Y be topological spaces such that f : X Ñ Y is a continuous
function. We say that the pair pY, fq is a topological extension of X if f rXs

is dense in Y (i.e., f rXs “ Y ).a. We say that an extension is
• A compactification: if Y is compact;
• A proper extension if f is a homeomorphism and X is non-compact.
• A strong compactification if it is a proper extension, a compactification,
and f rXs is open in Y .

aNote: None of this terminology is standard, since the existing terminology seems to differ a lot
between authors.

We also gave the example of αpωq. We will now take a look at a more general
instance of the latter kind of example.
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Alexandroff Compactifications in General

Definition
Let X be a topological space. Let X˚ :“ X \ t8u, and topologise this as
follows: a subset U Ď X˚ is open either if it is open in X , or if
U “ X ´ C Y t8u where C is a compact and closed subset of X .

Proposition
Let X be a non-compact topological space. Then pX˚, iq is a strong
compactification of X .

Proof: See Blackboard.
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Alexandroff Compactifications in General

The former is most useful when, in a technical sense, the space is already
compact on a “small scale”:

Definition
Let X be a Hausdorff space. We say that X is locally compact if for each
x P X there is a compact neighbourhood of x.

Proposition
Let X be a non-compact Hausdorff space. Then αpXq is Hausdorff if and
only if X is locally compact.

Proof: Exercise 5.8 in the notes. A counterexample is also added to other
plausible sounding conjectures.

Can we find a different, perhaps more canonical solution?
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Stone-Cech compactifications

Definition
Let X be a topological space. We say that a pair pY, iq where i : X Ñ Y is a
Stone-Cech compactification if it satisfies the following property: if Z is a
compact and Hausdorff space, and f : X Ñ Z is a continuous function,
there is a unique continuous function f : Y Ñ Z such that f “ f ˝ i.

X Y

Z
f

i

f

Figure 1: Stone-Cech Compactification

Observe: the construction is unique if it exists.
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Stone-Cech compactification of discrete spaces

In general, this construction is not very easy to obtain or visualise. But it
leads to important examples:

Example
Example of βω, the Stone-Cech compactification of the naturals, and βω ´ ω,
the Parovicenko space.

One can also construct this for general spaces, but we leave that task for the
brave reader wishing to venture in that part of the notes.

Example
Compactifications of duals of products of algebras: example with Boolean
algebras.
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Connectedness
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Connectedness

For our last key concept, we will take a look at connectedness. Perhaps no
other topological concept illustrates quite as well the different modelling
requirements that come up in topology.

Consider a topological space again, understood as an epistemic structure X .
Open sets U correspond to verifiable propositions, and we have talked about
how separation axioms can be thought of as imposing some constraints on
this. Here is another reasonable constraint, which is very similar to T1:

If two worlds x, y are distinct then there is a decidable proposition U which
distinguishes them.

The key difference is that instead of requiring the proposition to be
verifiable, we straight up ask it to be decidable. This seems like a plausible
requirement.
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Connectedness

Now let us consider a purely geometric requirement. If my space is to model
how classical space works, we might want to require the following:

If I have two points x, y, there should be a line uniting the two of them.

Can we satisfy the logician and the geometer in interesting spaces? No.
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Connectedness

Definition
Let pX, τq be a topological space. We say that X is connected if the only
clopen subsets of X are X and H.

This can be reformulated:

Proposition
Let pX, τq be a topological space. Then X is connected if and only if the only
continuous functions f : X Ñ t0, 1u are constant.

Proof: Exercise.

Example
The real line R is connected. The Cantor space is not connected (we will see
this later).
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Path-Connectedness

We went with the former definition, since it is easy to work with, and it has a
strong intuitive appeal: if x and y cannot be united by a line, this is because
something has separated the space.

But does it work?

Definition
Let X be a topological space. We say that X is path-connected if whenever
x, y P X , there is some path p from x to y.

Proposition
Let X be a path-connected space. Then X is connected.

Proof: See Blackboard.
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Path-Connectedness

What about the other inclusion?

Example
There are many pathological examples showing that connectedness does
not imply path-connectedness (see Exercise 6.2 for an example). Over the
reals the two notions coincide.

But then at least we have obtained a good invariant of space which captures
the holes that a space might have, right?

Example
Example of R ´ t0u and R2 ´ t0u.
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Disconnectedness

Shocked at the intuitive mismatch between the former, we rush to make our
spaces as little connected as possible. We come with the following:

Definition
Let X be a topological space. We say that a subset A Ď X is a connected
component if A is connected, and whenever A Ď B Ď X , then B is not
connected. We denote by ConpXq the set of connected components of X .

Definition
Let X be a topological space. We say that X is totally disconnected if
whenever A Ď X and A is connected, then there is x P X such that A “ txu.
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Disconnectedness

Just like in the case for connectedness, one can come up with a different
definition which arguably fits the epistemologist better:

Definition
Let X be a topological space. Given two points x, y P X , we write x ”QC y if
and only if for all clopens U Ď X , x P U if and only if y P U .
We say that X is totally separated if x ”QC y if and only if x “ y.

Lemma
Let X be a topological space. Then:
1. If X is totally separated, then X is totally disconnected.
2. If X is compact and Hausdorff, the converse also holds.

Proof: See Blackboard.

Example
The Cantor space is totally separated. See Blackboard.
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Stone Spaces

An extremely important example of totally separated spaces are Stone
Spaces.

Definition
Let X be a topological space. We say that X is a Stone space if it is compact,
Hausdorff and totally disconnected.

Lemma
Let X be a topological space. Then X is a Stone space if and only if it is a
compact Hausdorff space generated by a basis of clopen subsets.

Example
The Stone-Cech compactification of any discrete space is a Stone space.
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Disconnectedness: A Lost Promise

We have seen one direction, but does total disconnectedness imply total
separation?

Also, if I have a totally disconnected space, is it safe to assume that it is so
robustly?

Figure 2: Cantor’s Teepee
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Things we did not see, but which are in the lecture notes

• Isolated points.

• Extremally disconnected spaces.
• Scattered spaces.
• I encourage you to have a read of these concepts, and try to do some
exercises, as they are also quite ubiquitous in logic; but unfortunately
we do not have time for it all!

18



Things we did not see, but which are in the lecture notes

• Isolated points.
• Extremally disconnected spaces.

• Scattered spaces.
• I encourage you to have a read of these concepts, and try to do some
exercises, as they are also quite ubiquitous in logic; but unfortunately
we do not have time for it all!

18



Things we did not see, but which are in the lecture notes

• Isolated points.
• Extremally disconnected spaces.
• Scattered spaces.

• I encourage you to have a read of these concepts, and try to do some
exercises, as they are also quite ubiquitous in logic; but unfortunately
we do not have time for it all!

18



Things we did not see, but which are in the lecture notes

• Isolated points.
• Extremally disconnected spaces.
• Scattered spaces.
• I encourage you to have a read of these concepts, and try to do some
exercises, as they are also quite ubiquitous in logic; but unfortunately
we do not have time for it all!

18



Thank you!
Questions?
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