TOPOLOGY PROJECT, 2ND LECTURE

Søren Brinck Knudstorp January 17, 2023

Universiteit van Amsterdam

Plan for the day

- A few announcements
- Recap
- New stuff
- Break from 15h45-16h
- More new stuff

Announcements

Announcements:

- First MC quiz has been published (deadline: Friday 12h30)
- Only slides, no blackboard, in yesterday's recording (we'll see if we can fix it today)

Recap

Definition (topological space)

Let X be a set. $\tau \subseteq \mathcal{P}(X)$ is a topology on X:iff

- (O1) \varnothing and X are in τ ; i.e., $\varnothing \in \tau$ and $X \in \tau$.
- (O2) τ is closed under arbitrary unions.
- (O3) au is closed under finite intersections.

Terminology:

- au is a topology on X
- (X, τ) is a topological space (or simply: X is a top. sp.)
- $U \in \tau$ is open

Logic	Topology
Epistemic worlds/situations/models/etc.	Points, $x \in X$
Verifiable propositions	Open sets, $U \in \tau$

4

Recap (cont.)

Definition (basis and subbasis)

Given a top. sp. (X,τ) , $\mathcal{B}\subseteq \tau$ is a basis for the topology τ :iff $\forall U\in \tau, \exists (V_i)_{i\in I}\subseteq \mathcal{B}$ s.t.

$$U = \bigcup_{i \in I} V_i.$$

Further, $S \subseteq \tau$ is a subbasis for the topology :iff $\{\bigcap_{V \in M} V \mid M \subseteq S, M \text{ is finite}\}$ forms a basis for the topology.

Terminology: Given a (sub)basis $\mathcal{B} \subseteq \tau$, we call members $U \in \mathcal{B}$ (sub)basic opens.

Proposition

Let X be a set and $C \subseteq \mathcal{P}(X)$ a collection of sets. Then there is a (unique) topology on X for which C is a subbasis.

Moreover, if (1) C covers X (i.e., $\bigcup_{U \in C} U = X$) and (2) C is closed under binary intersections, then there is a (unique) topology on X for which C is a basis.

5

Examples of sub(bases)

Epistemic example

Let $X = \{a, b, c, d\}$ where a, b, c, d are worlds described as follows:

	All ravens are black	Some raven is non-black
$(\forall WS)$	a	b
$(\exists \neg WS)$	c	d

^{*}See blackboard for rest of example*

More examples:

- · Real line topology (see blackboard)
- · Cantor and Baire spaces (see lecture notes, Examp. 2.2.8)

Comparing topologies

Definition

Let X be a set, and τ and τ' two topologies on this set. We say that τ is a *coarser topology* than τ' if $\tau \subseteq \tau'$. Conversely, we say that τ' is *finer* than τ .

(Highly useful) lemma

Suppose X is a set with two topologies τ and τ' , and \mathcal{B}_{τ} and $\mathcal{B}_{\tau'}$ are bases for these topologies, respectively. Then $\tau \subseteq \tau'$ iff for all points $x \in X$ and all basic τ -open $U \in \mathcal{B}_{\tau}$ containing x, there is some basic τ' -open $U' \in \mathcal{B}_{\tau'}$ such that $x \in U' \subseteq U$.

Proof

See blackboard.

Comparing tops on \mathbb{R} : $\tau_F \subsetneq \tau_E$

Euclidean top, τ_E , and top, τ_F , gen. by basis $\{(l, \infty) \mid l \in \mathbb{R}\}$. See blackboard.

Generating New Topologies: Subspaces

Definition (subspace)

Let (X,τ) be a ts and $S\subseteq X.$ We denote by τ_S the subspace topology on S defined as

$$\tau_S := \{ U \cap S \mid U \in \tau \}.$$

Terminology: (S, τ_S) is a subspace of (X, τ) .

Lemma (subspace basis)

Let (X, τ) be a ts with a basis \mathcal{B} , and let $S \subseteq X$. Then the set

$$\mathcal{B}_S = \{ U \cap S : U \in \mathcal{B} \}$$

is a basis for τ_S .

Proof

See blackboard.

Subspace top on $\mathbb{Z} \subseteq \mathbb{R}$

See blackboard.

Generating New Topologies: Finite Products

Definition (product top)

Let X and Y be ts. We define a topology on the product $X \times Y$, called the *product topology*, as follows: a set $U_0 \times U_1 \subseteq X \times Y$ is basic open :iff U_0 is open in X and U_1 is open in Y.

Proposition (subspaces and products commute)

Suppose X and Y are ts; $S_X\subseteq X$; and $S_Y\subseteq Y$. Then first constructing the product topology $X\times Y$ and then constructing the subspace topology $S_X\times S_Y\subseteq X\times Y$ is the same as first constructing the subspace topologies $S_X\subseteq X$ and $S_Y\subseteq Y$ and then taking their product $S_X\times S_Y$.

Proof

See blackboard.

Lemma

Let X and Y be ts with bases \mathcal{B}_X and \mathcal{B}_Y . Then $\{U_X \times U_Y \mid U_X \in \mathcal{B}_X, U_Y \in \mathcal{B}_Y\}$ forms a basis for the product topology on $X \times Y$.

Proof of lemma is an exercise.

Closed sets

Definition

Let (X, τ) be a ts. We say that a set $U \in \mathcal{P}(X)$ is *closed* if its complement is open; i.e., if $(X - U) \in \tau$.

Proposition

Let (X, τ) be a ts. Then:

- (C1) X and \emptyset are closed sets.
- (C2) Arbitrary intersections of closed sets are closed.
- (C3) Finite unions of closed sets are closed.

Proof.

Follows from the complement operator taking unions to intersections (and vice versa).

Lemma

Suppose (S, τ_S) is a subspace of (X, τ) . Then a set $U \in \mathcal{P}(S)$ is closed in S iff there is some closed set V in X (i.e., $(X - V) \in \tau$) such that $U = V \cap S$.

Proof of lemma is an exercise.

Epi. int.: what are the closed sets?

Falsifiable propositions

Recall:

 $(\exists \neg WS)$ There is a non-white swan. $(\forall WS)$ All swans are white.

Definition

A proposition P is *verifiable* :iff whenever P is true at a world x (i.e., $x \in [\![P]\!]$), it is possible to verify P at x (i.e., verify $x \in [\![P]\!]$).

Dually, we can define:

Definition

A proposition P is falsifiable :iff whenever P is false at a world x (i.e., $x \notin \llbracket P \rrbracket$), it is possible to falsify P at x (i.e., falsify $x \in \llbracket P \rrbracket$).

Then a proposition is falsifiable iff its negation is verifiable. I.e., the closed sets are precisely the falsifiable propositions!

Open, closed, both and neither

NB: Unlike a door, we do <u>not</u> have: $S \subseteq X$ is closed iff S is not open Sets can also be both open and closed (shortened clopen); or neither open nor closed.

Using our epistemic intuition, we can make very good sense of this:

	Verifiable (open)	Falsifiable (closed)
All swans are white		X
Some swan is non-white	Х	
It is raining outside	Х	Х
JFK's last thought was "What is the OTL?"		

Closure and interior

Definition

Let X be a ts and $S \subseteq X$. We denote by

$$cl(S) := \overline{S} := \bigcap \{ S \subseteq C \mid C \text{ is closed} \}$$

the closure of S, which is the smallest closed set K such that $S\subseteq K$. We denote by

$$int(S) := \bigcup \{U \subseteq S \mid U \text{ is open}\}\$$

the interior of S, which is the largest open set K such that $K \subseteq S$.

Observation: Using this def., we get:

- (C) $S \subseteq X$ is closed iff $S = \overline{S}$;
- (0) $S \subseteq X$ is open iff S = int(S).

Neighbourhoods

Definition

Given a ts (X, τ) and $x \in X$, $V \subseteq X$ is a *neighbourhood* of x :iff there is an open set U such that $x \in U \subseteq V$.

Observe that if a neighbourhood V of a point x is open, the definition simplifies: V is an open neighbourhood of a point x iff $x \in V$ and V is open.

Proposition

Suppose X is a ts and $S \subseteq X$. Then TFAE for a point $x \in X$:

- x is in the closure of S; i.e., $x \in cl(S)$.
- All open neighbourhoods U of x have non-empty intersection with S; i.e., $U \cap S \neq \emptyset$.

Proof.

By contrapositions, see blackboard.

Epistemic intuition: summary

Logic	Topology
Epistemic worlds/situations/etc.	Points, $x \in X$
Verifiable propositions	Open sets, $U \in \tau$
Falsifiable propositions	Closed sets, $U^C \in \tau$
Verifiable propositions true at x	Open neighbourhoods U of x
(Sub)basic verifiable propositions	(Sub)basic opens

A teaser for Friday ...

Continuous functions

Definition

Let $f:X\to Y$ be a function between topological spaces. We say that f is continuous :iff for all $U\subseteq Y$ open in Y, the preimage

$$f^{-1}[U] := \{ x \in X \mid f(x) \in U \}$$

is open in X.

What a seemingly weird definition of continuity ... Let's use this proposition to see how it actually does agree with our intuition of continuity:

Proposition

Let $f: X \to Y$ be a function between topological spaces. Then TFAE:

- (i) f is continuous
- (ii) For every $S\subseteq X$: $f\left(\overline{S}\right)\subseteq\overline{f(S)}$, i.e., if $x\in cl_X(S)$ then $f(x)\in cl_Y(f(S))$

Interpretation: For $S\subseteq X$ and $x\in X$, we say that x is close to S :iff $x\in cl(S)$. Then f is continuous iff

for every $S \subseteq X$, f maps points close to S to points close to f(S).

That's it for today, any questions?