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Plan for the day

– Recap
– New stuff
– Break from 11h45-12h
– More new stuff
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Recap: generating new topologies

Definition (subspace)
Let pX, τq be a ts and S Ď X . We denote by τS the subspace topology on S

defined as
τS :“ tU X S | U P τu.

Definition (finite product top)
Let X and Y be ts. We define a topology on the product X ˆ Y , called the
product topology, as follows: a set U0 ˆ U1 Ď X ˆ Y is basic open :iff U0 is
open in X and U1 is open in Y .

Lemmas: Both constructions can be obtained by taking bases for original
space(s).

Proposition: The constructions commute.
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Recap: closed sets, closure and interior

Definition
Let pX, τq be a ts. We say that a set U P PpXq is closed if its complement is open; i.e.,
if pX ´ Uq P τ .

Definition
Let X be a ts and S Ď X . We denote by

clpSq :“ S :“
č

tS Ď C | C is closedu

the closure of S, which is the smallest closed set K such that S Ď K .
We denote by

intpSq :“
ď

tU Ď S | U is openu

the interior of S, which is the largest open set K such that K Ď S.

Observation: Using this def., we get:

(C) S Ď X is closed iff S “ S;
(O) S Ď X is open iff S “ intpSq.
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Recap: neighbourhoods

Definition
Given a ts pX, τq and x P X , V Ď X is a neighbourhood of x :iff there
is an open set U such that x P U Ď V .
Observe that if a neighbourhood V of a point x is open, the
definition simplifies: V is an open neighbourhood of a point x iff
x P V and V is open.

Proposition
Suppose X is a ts and S Ď X . Then TFAE for a point x P X :
• x is in the closure of S; i.e., x P clpSq.
• All open neighbourhoods U of x have non-empty intersection
with S; i.e., U X S ‰ ∅.
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Recap: summary of epistemic intuition

Logic Topology
Epistemic worlds/situations/etc. Points, x P X

Verifiable propositions Open sets, U P τ

Falsifiable propositions Closed sets, UC P τ

Verifiable propositions true at x Open neighbourhoods U of x
(Sub)basic verifiable propositions (Sub)basic opens
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Continuity
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Recap: continuous and open maps (and why the latter do not
formalise continuity)

Definition (Continuous map)
Let pX, τXq, pY, τY q be ts and f : X Ñ Y a map between them. Then f is continuous
:iff for all U Ď Y open in Y , the preimage f´1rUs :“ tx P X | fpxq P Uu is open in X ;
i.e.,

@U Ď Y pU P τY ùñ f´1rUs P τXq.

Definition (Open map)
Let pX, τXq and pY, τY q be ts, and f : X Ñ Y a map between them. We say that f is
open if for every open U in X , its image f rUs “ tfpxq P Y | x P Uu is open in Y ; that
is,

@U Ď XpU P τX ùñ f rUs P τY q.

Example
Consider the function

f : R Ñ R, fpxq ÞÑ

#

x if x ď 0

0 otherwise

We showed that f is continuous but not open. 8



Continuous functions

Definition
Let pX, τXq, pY, τY q be ts and f : X Ñ Y a map between them. Then f is
continuous :iff for all U Ď Y open in Y , the preimage
f´1rUs :“ tx P X | fpxq P Uu is open in X ; i.e.,

@U Ď Y pU P τY ùñ f´1rUs P τXq.

Proposition
Let f : X Ñ Y be a map between topological spaces. Then TFAE:
(i) f is continuous
(ii) For every S Ď X : f

`

S
˘

Ď fpSq, i.e., if x P clXpSq then fpxq P clY pfpSqq

Interpretation: For S Ď X and x P X , we say that x is close to S :iff x P clpSq.
Then f is continuous iff

for every S Ď X , f maps points close to S to points close to fpSq.

Proof.
See blackboard.
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More equivalent definitions of contintuity

Proposition
Let f : X Ñ Y be a map between topological spaces and BY a (sub)basis for the
topology on Y . Then the following are equivalent:
1. f is continuous.
2. For every (sub)basic open U P BY , its preimage f´1rUs is open in X .
3. For every closed set U in Y , its preimage f´1rUs is closed in X .
4. For every x P X , whenever V Ď Y is a (basic) open neighbourhood of fpxq,
there is an open neighbourhood U Ď X of x such that f rUs Ď V .

Proof.
We covered 1. ô 2. on Friday, the remaining is left as an exercise.

Remark: f is said to be continuous at a point x P X if condition 4. holds for x.

You should show that under the “close to”-interpretation, we have that f is
continuous at a point x P X iff

(˚)local for every S Ď X , if x is close to S then fpxq is close to f rSs.
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Continuous maps between S4 frames

– Topological spaces are much more and much else than R; likewise must the top.
notion of continuity cover much more and much else than continuity on R.

– What are the continuous maps on reflexive and transitive Kripke frames?

Definition
Let F “ pW,Rq,F1 “ pW 1, R1q be Kripke frames. A map f : W Ñ W 1 satisfies

• the forth condition if whenever xRy, we have fpxqR1fpyq; and
• the back condition if whenever fpxqR1y1 , Dy P W s.t. xRy and fpyq “ y1 .

Proposition
Let F “ pW,Rq and F1 “ pW 1, R1q be two reflexive and transitive Kripke frames,
equipped with the Alexandroff topology, and f : W Ñ W 1 a map between them. Then:
1. f satisfies the forth condition if and only if f is continuous.
2. f satisfies the back condition if and only if f is open.

Proof.
See blackboard.

Example of open, but not continuous map
See blackboard. 11



Homeomorphisms, embeddings, and quotient maps

Definition
Let f : X Ñ Y be a map between ts. We say that f is

• a quotient map if (i) it is surjective and (ii) for all U Ď Y ,
U is open in Y iff f´1

pUq is open in X ;
• a homeomorphism if it is bijective, continuous and open; and
• a (topological) embedding or an interior map if the restriction

f 1 : X Ñ f rXs

is a homeomorphism (where f rXs Ď Y has the subspace topology).

Important: Homeomorphism is the topological version of an “isomorphism”:
Whenever topological spaces are homeomorphic, they are topologically the
same (i.e., have the same top. properties).
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Characterizing embeddings and quotient maps

Definition
Let f : X Ñ Y be a map between ts. Then f is closed if for every closed U in
X , its image f rU s “ tfpxq P Y | x P Uu is closed in Y .

Lemma
Let f : X Ñ Y be a map between ts. Then:
(0.q) f is a quotient map if and only if (i) f is surjective and (ii’) for all U Ď Y ,

U is closed in Y if and only if f´1pUq is closed in X .
(1.q) If f is a quotient map, then f is surjective and continuous.
(2.q) If f is surjective, continuous and open, then f is a quotient map.
(3.q) If f is surjective, continuous and closed, then f is a quotient map.
(1.e) If f is an embedding, then f is injective and continuous.
(2.e) If f is injective, continuous and open, then f is an embedding.
(3.e) If f is injective, continuous and closed, then f is an embedding.

Proof.
(0.q)-(3.q) follow almost directly by definition. (3.e) matches a HW exercise. So
we show (1.e) and (2.e) (see blackboard).
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“Quotienting is like gluing”

Definition (quotient topology)
Let X be a ts, „ an equivalence class on X , and

q : X Ñ X{„, x ÞÑ rxs„

The quotient topology on X{„ is defined as follows:

U Ď X{„ is open :iff q´1rU s is open in X .

Gluing endpoints of an interval to obtain a circle
See blackboard.
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Some preliminaries for Tuesday and
Wednesday
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Filters and filter bases

Definition (Filter and filter base)
Let X be a set. A collection of subsets F Ď pPpXq ´ tHuq is a filter base :iff

• X P F ;
• If A,B P F then A X B P F .

We say that a filter base is a filter if it is upwards closed:
• If A P F and A Ď B, then B P F .

Useful fact
Let X be a set, and F a filter base. Then the upwards closure of F

F Ò :“ tC Ď X : DG P F,G Ď Cu,

is a filter.

Given a ts pX, τq and x P X , we denote the set of neighbourhoods of x by N pxq.
Lemma
Let pX, τq be a ts and x P X . Then N pxq is a filter.

Proof.
See blackboard. 16



Convergence and filter (bases)

Definition
Let pX, τq be a topological space and F Ď τ a filter (base). We say
that the filter (base) F converges to a point x, and that x is a limit of
the filter (base), if and only if for every U P N pxq, there is some
V P F such that V Ď U .

Note that the notion of convergence does not say anything about
uniqueness.
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That’s it for today. Please read section 4.1 and
4.2 to prepare for tomorrow’s tutorial.

Any questions?
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