TOPOLOGY IN AND VIA LOGIC HOMEWORK ASSIGNMENT 3

- Deadline: February 09 at 23:59.
- All exercises are worth the same points.
- Good luck!

Compactness and Connectedness

Definition 1. Let X be a set, and $S \subseteq \mathcal{P}(X)$ closed under intersection, union, complement and contains X and \emptyset; we say that S is a Boolean algebra. We say that $F \subseteq S$ is an S-filter if:
(1) $X \in F$;
(2) If $U \in F$ and $U \subseteq V$ where $V \in S$, then $V \in F$;
(3) If $U, V \in F$ then $U \cap V \in F$.

Furthermore, we call it an S-prime filter if for each $U \in S$, either $U \in F$ or $X-U \in F$.
Note: Below you can use the fact that the Prime Filter Theorem, which we saw in class, holds for any Boolean algebra in the above condition.
Exercise 1. Let X be a topological space. Observe that

$$
\operatorname{Clop}(X)=\{U \subseteq X: U \text { is clopen }\}
$$

is closed under intersection, union, complement and contains X and \varnothing. Thus, we can consider the collection of $\operatorname{Clop}(X)$-prime filters, denoted by $X^{*}=\operatorname{Spec}(\operatorname{Clop}(X))$. We give this space a topology by specifying the following basis (you may assume without proof that this, indeed, is a basis for a topology on X^{*}):

$$
\{\phi(U): U \in \operatorname{Clop}(X)\} \text { where } \phi(U)=\left\{F \in X^{*}: U \in F\right\} .
$$

(1) Show that X^{*} is always a compact Hausdorff space. Hint: For compactness, given $X^{*}=\bigcup_{i \in I} \phi\left(U_{i}\right)$, it might be helpful to consider

$$
\left\{U \in \operatorname{Clop}(X) \mid U \supseteq U_{i_{0}}^{c} \cap \cdots \cap U_{i_{n}}^{c} \text { for some }\left\{i_{0}, \ldots, i_{n}\right\} \subseteq I\right\}
$$

(2) Show that (i) the map $i: X \rightarrow X^{*}$ given by

$$
i(x):=\{U \in \operatorname{Clop}(X): x \in U\}
$$

is well-defined; and (ii) if X has a basis consisting of clopen sets, $\left(X^{*}, i\right)$ is a decent compactification of X (given that X is not compact).

BONUS EXERCISES (NOT COMPULSORY)

Definition 2. Let X be a normal topological space. We say that X is strongly zerodimensional if whenever A, B are disjoint closed sets, then there is some clopen set U such that $A \subseteq U$ and $B \subseteq X-U$.
(3) Assume that X is a strongly zero-dimensional space, and suppose that Z is some compact Hausdorff space, such that $f: X \rightarrow Z$ is a continuous function. Show that for $x \in X^{*}$ the map

$$
\tilde{f}(x):=\bigcap\{\overline{f[U]}: U \text { is clopen and } x \in U\}
$$

is a well-defined continuous map, and has the property that $\tilde{f} \circ i=f$.
(4) Conclude that for strongly zero-dimensional spaces we have that $X^{*} \cong \beta(X)$.

