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Introduction
• Zeno − Space is discrete and therefore motion is impossible!
• Anaxagoras − “Neither is there a smallest part of what is

small, but there is always a smaller (for it is impossible that
what is should cease to be)”

• Euclid − Geometry is the study of the continuous and it is
more fundamental. Arithmetic is the study of the discrete.
(But Euclid proved that there are infinite primes by using the
length of line segments in an attempt to show the superiority
of the continuous!)

• St. Thomas Aquinas − How many angels can dance on the
head of a pin?

• John Bell (Bell, 2019) has argued that the opposition between
the continuous and the discrete has been the biggest problem
and the main source of development in the history of
mathematics

3/34



1.1. Cauchy Sequences
Definition 1.1. Cauchy sequence

A sequence of rationals ⟨xn⟩ is a Cauchy sequence iff

∀k∃n∀p |xn+p − xn| < 2−k.

Definition 1.2. Equivalence classes of Cauchy sequences

⟨rn⟩ ∼ ⟨sn⟩ iff ∀k∃n∀p |rn+p − sn+p| < 2−k.

Let C denote the class of Cauchy sequences. Then,

Definition 1.3. The real number line

R := C/ ∼:= {[⟨xn⟩n∈N]∼ | ⟨xn⟩n∈N ∈ C}.
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1.2. Convergence and Completeness of R

Definition 1.4. A Cauchy sequence ⟨xn⟩ converges to y

limn→∞⟨xn⟩ = y iff ∀k∃n∀p |y − xn+p| < 2−k.

Theorem 1.1.

A real sequence converges iff it is a Cauchy sequence.

This theorem assures us that Cauchy sequences can indeed be
identified with real numbers. Under Cauchy completeness, real
numbers are identified with the limits of these sequences.
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1.3. Least Upper Bound Property

A more common (and stronger) method of expressing the
completeness of the reals is by showing that R has

Theorem 1.2. The least upper bound property

If S is a nonempty subset of R that is bounded above, then
S has a least upper bound, that is sup(S) exists.

Both these classical approaches for solidifying the completeness of
the reals are grounded in points!
*Million Dollar Question* can we describe the continuum based
on discrete points?
As we will see, the intuitionists are not convinced...
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2.1. BHK-Interpretation of Intuitionism

• A proof of A ∧B is given by presenting a proof of A and a
proof of B

• A proof of A ∨B is given by presenting either a proof of
A or a proof of B

• A proof of A → B is a construction which enables us to
transform a proof of A into a proof of B

• ⊥ has no proof. So a proof of ¬A is a construction which
transforms a proof of A into a proof of ⊥

• A proof of ∀xA(x) is a construction which tranforms a
proof of d ∈ D into a proof of A(d) (where D is the
domain over which the variable x ranges)

• A proof of ∃xA(x) is given by providing a d ∈ D along
with a proof of A(d)
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2.2. Introduction to Bolshevism

Definition 1.5. ⟨rn⟩ is a real number generator iff

∀k∃n∀p |rn+p − rn| < 2−k.

While this is essentially the classical definition of a Cauchy
sequence, the BHK-interpretation of logical connectives ensures
that this definition only works when we are given a (finite) rule or
explicit procedure for finding such an n. Therefore,

• not all Cauchy sequences are intuitionistically acceptable,
• we need to rethink our classical notions of identity and orders

on the reals
• The law of trichotomy does not generally hold over the

intuitionistic reals!
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2.3. A quick note on the Axiom of Choice

A formulation of the Axiom of Choice (AC):

∀α∃nA(α, n) → ∃φ∀αA(α, φ(α))

• Given the BHK-Interpretation of the quantifiers, this axiom is
not problematic.

• Constructivists who dismiss this axiom, dismiss it on the basis
of its classical interpretation.

• AC is actually used in many intuitionistically acceptable proofs
(and we will use it later!)
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2.4. Choice Sequences

*Warning* Things get real weird, real fast...
• A choice sequence α is an ever unfinished process of choosing

rational numbers α(0), α(1), α(2), . . . by the creating subject.
• The creating subject may choose to follow some sort of rule in

choosing numbers (e.g., she might want to form an ordered
sequence of prime numbers where α = p1, p2, p3, . . .) or she
may arbitrarily choose values for each term.

• Intuitionistically acceptable Cauchy sequences are lawlike
since we’re given an effective procedure for finding n

• At any stage in the creating subject’s activity, only a finite
number of terms have been chosen.
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2.5. Free Choice Sequences

• Free choice sequences lead to the idea that any function φ
acting on all choice sequences can only determine the value of
φ(α) for a particular sequence α via a finite initial segment.

• The finite initial segment of a sequence ⟨α(0), . . . , α(n− 1)⟩
is denoted as α(n).

• Then, if we have a choice sequence β where β(n) = α(n) for
some n, we get φ(β) = φ(α), i.e.,

∀α∃n∀β ∈ α(n)(φ(α) = φ(β)).
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2.6. Weak Continuity Principle
• Again,

∀α∃n∀β ∈ α(n)(φ(α) = φ(β)).

• Combining this with AC

∀α∃nφ(α, n) → ∃φ∀αA(α, φ(α)),

• We get

The weak continuity principle (WC-N)

∀α∃nA(α, n) → ∀α∃n∃m∀β ∈ α(n)A(β,m)

• The intuition behind WC-N is that while choice sequences can
be wild and unruley things, properties can be ascribed to them
based on finite initial segments.

• This is Brouwer’s solution to the uncertainty Borel expressed
with respect to infinite choice sequences.
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2.7. How Classical is WC-N?

Using the intuitionistically acceptable equivalence

(A ∨B) ↔ ∃n[(n = 0 ∧A) ∨ (n ̸= 0 ∧B)],

we can reformulate WC-N into its disjunctive counterpart:

WC-N∨

∀α(A(α) ∨B(α)) →

∀α∃n(∀β ∈ α(n)A(β) ∨ ∀β ∈ α(n)B(β))

While WC-N may seem harmless at first glance, it is actually a
radically non-classical principle!
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2.8. WC-N Refutes LEM!
Theorem 2.1. The weak continuity principle refutes the law of
excluded middle (LEM).

Proof. Since we work within an intuitionistic context, we must
first assume the LEM. Specifically, its variation ∀−LEM, i.e.,

∀α[∀x(α(x) = 0) ∨ ∀x(α(x) ̸= 0)].

Then, by WC-N∨ we obtain

∀α∃n[∀β ∈ α(n)∀x(β(x) = 0) ∨ ∀β ∈ α(n)∀x(β(x) ̸= 0)].

If we set α to be the constant function on 0, then for all β ∈ α(n)

∀x(β(x) = 0) ∨ ∀x(β(x) ̸= 0).

In this case, both disjuncts fail since when β /∈ α(n + m) for
some m > 0, then ∀x(β(x) = 0) doesn’t hold, and when β = α,
∀x(β(x) ̸= 0) doesn’t hold.
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3.1. Trees, Spreads, and Fans
Let T = (ω<ω,⪯) denote a tree where each path is identified with a choice
sequence α, β, γ, . . . and each node with a finite sequence u⃗, v⃗, w⃗, . . . where
each u⃗ denotes a class of choice sequences where α ∈ u⃗ ↔ ∃n(u⃗ = α(n)).

• We define the partial order ⪯ over ω<ω as follows:
v⃗ ⪯ u⃗ ↔ ∃w⃗(v⃗ = u⃗ ∗ w⃗).

• A tree T = (ω<ω,⪯) is a non-empty, rooted, and decidable set of finite
sequences. More formally, T is a tree iff

(i) ∅ ∈ T
(ii) ∀u⃗(u⃗ ∈ T ∨ u⃗ /∈ T )
(iii) ∀u⃗∀v⃗(u⃗ ⪯ v⃗ ∧ u⃗ ∈ T → v⃗ ∈ T )

• A spread is a tree in which each node has a successor:
(iv) ∀u⃗ ∈ T∃n(u⃗ ∗ ⟨n⟩ ∈ T )

• A fan is a finitely branching spread satisfying
(v) ∀u⃗ ∈ T∃k∀n(u⃗ ∗ ⟨n⟩ ∈ T → n ≤ k)

• We say that a sequence α is a branch of the tree when
α ∈ T ↔ ∀n(α(n) ∈ T ).

• For any decidable predicate A where ∀α∃nA(α(n)), we can define a bar
such that P := {u⃗ ∈ T | A(u⃗) ∧ ∀v⃗ ⪯ u⃗¬A(v⃗)}.
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3.2. Fan Theorem
The decidable fan principle states that for any fan T , decidable property A,
and α ∈ T where α(n) satisfies A, then there exists a uniform upper bound k
such that A(α(m)) for some m ≤ k. Formally,

The decidable fan principle (FAND)

∀u⃗(A(u⃗) ∨ ¬Au⃗) ∧ ∀α ∈ T∃nA(α(n)) →
∃k∀α ∈ T∃m(m ≤ k → A(α(m)))

FAND tells us that, if a decidable property can be found for a branch at some
finite stage, then it can be decided for all branches at some finite stage.
Strengthening this principle by extending it to properties which are not
necessarily decidable, we get

The stronger fan principle (FAN)

∀α ∈ T∃nA(α(n)) → ∃k∀α ∈ T∃m(m ≤ k → A(α(m)))
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3.3. Compactness
It is interesting at this point to note that FAN expresses the compactness of
a fan. To see this, we equip onto a fan T a topology of initial segments of
sequences in T . This topology is generated by the basis B := {Uu⃗ | u⃗ ∈ T}
where Uu⃗ := {α ∈ T | α ∈ u⃗}. We let {Wi | i ∈ I} be any open cover of T . It
follows immediately that

∀α ∈ T∃n∃i ∈ I(Uα(n) ⊆ Wi).

By FAN, it follows that

∃k∀α ∈ T∃m ≤ z∃i ∈ I(Uα(m) ⊆ Wi).

Essentially, what we have here is a bar. From this, we can generalize

∃k∀α ∈ T∃i ∈ I(Uα(k) ⊆ Wi).

But since α(k) denotes a finite set of initial segments u⃗1, . . . , u⃗n, we can set
each u⃗p to some Wiq where Uu⃗p ⊆ Wiq . Since k is finite, {Wi0 , . . . ,Wik}
forms a finite subcover.
Similarly, FAND expresses a restricted form of decidable compactness − if the
basis is specified by a decidable property, then we get compactness.
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4. 1. Continuity
• A real-valued function f is uniformly continuous on an interval

[u, v] iff
∀k∃m∀x, y ∈ [u, v](|x− y| < 2−m → |f(x)− f(y)| < 2−k)

• f is uniformly continuous iff it is uniformly continuous on every
interval.

• A canonical real number generator is a way of relating some
x ∈ [u, v] to a particular fan. It is a real number generator ⟨rn⟩
whose generating rule has only finitely many possible choices for
each rn.

Theorem 4.1.

For every closed interval [u, v] we can build a spread T such
that every real number x ∈ [u, v] is generated by a ⟨rn⟩ ∈ T .

• More generally, for every x ∈ [0, 1], there exists an α such that
x = cα.
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4.2. Brouwer’s Theorem
Theorem 4.2. (Uniform Continuity Theorem) If f is a total function on [0, 1], then f is uniformly
continuous on [0, 1].

Proof. Let f be a total function on [0, 1]. The interval [0, 1] can be represented by a spread T where

f(cα) = f(x) for α ∈ T.

For each n and x ∈ [0, 1], we can approximate f(x) to within 2−n−1. More formally,

∀α ∈ T∃m |f(cα) − m · 2−n−1| < 2
−n−1

.

Since the relationship between α and m is extensional, we apply an ‘extended’ version of FAN for
extensional predicates. By applying FAN, we obtain that for every n, we can find an r such that

∀α ∈ T∃m∀β ∈ α(r) |f(cβ) − m · 2−n−1| < 2
−n−1

.

Now suppose that for y, z ∈ [0, 1], |y − z| < 2−n−1. Then by the above theorem, we can set
y = cα and z = cβ such that cα(r) = cβ(r). We then get

|f(y) − f(z)| = |f(cα) − f(cβ)|

̸> |f(cα) − m · 2−n−1| + |f(cβ) − m · 2−n−1|

< 2
−n

.

Since for each n we can effectively find such an r, it follows that f is uniformly continuous on [0, 1].
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4.3. Indecomposability of R

Definition 4.1. Indecomposability of a set

A set X is indecomposable if X = A ∪ B where A ∩ B = ∅
(denoted X = A + B which is called a proper decomposition),
then X = A or X = B.

Theorem 4.3. R is indecomposable.

If any sets A and B formed a proper decomposition of R, i.e.,
R = A+B, then in an intuitionistic context this suggests that we
have an effective function f which determines for all x ∈ R

f(x) :=

{
1 if x ∈ A

0 if x ∈ B.

This function, however, is clearly not continuous.

20/34



4.4. Indecomposability of R \ {0} [1/3]
Theorem 4.4. R \ {0} is indecomposable.

Proof.
Let R\{0} = A+B, and suppose that A+B is a proper decomposition
of R \ {0}, i.e., A ∩ B = ∅ and A ̸= R \ {0} ∧ B ̸= R \ {0}. So
∀x ∈ R(x ̸= 0 → x ∈ A ∨ x ∈ B).
Now let Rr := {x ∈ R | x ≥ 0} and Rl := {x ∈ R | x ≤ 0}. Pick
x ∈ Rl where x < 0. We know that x ∈ A ∨ x ∈ B. Suppose x ∈ A.
Now assume that y ∈ Rl such that y < 0 and y ∈ B. Then (−∞, 0) =
(−∞, 0)∩A∪(−∞, 0)∩B. But then we have a partitioning of (−∞, 0)
into (−∞, 0) ∩ A and (−∞, 0) ∩ B. This, however, contradicts the
indecomposability of R.
So from y < 0 → y /∈ B, we get y ∈ B → y ≥ 0. In other words,
B ⊆ Rr. Now let z > 0 and suppose z ∈ A. A similar argument
shows that (0,∞) has a proper decomposition which, again, conflicts
with Brouwer’s theorem. So we similarly get z ∈ A → z ≤ 0, i.e.,
A ⊆ Rl. We then obtain

∀x ∈ R(x ̸= 0 → x ≥ 0 ∨ x ≤ 0).
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4.4. Indecomposability of R \ {0} [2/3]
Theorem 4.4. R \ {0} is indecomposable.

In order to formulate our desired sequences for the next part of this
proof, we need to make use of Kripke’s schema:

∃α ∈ {0, 1}ω(∃n(α(n) = 1) ↔ φ). (KS)

This schema defines binary sequences where the terms of α are equal
to 1 when φ holds and 0 otherwise. We can consider a property φ for
which there is at most one n such that α(n) = 1:

∀n
n∑

x=0

α(x) ≤ 1.

Using Kripke’s schema, we can generate sequences from the statements
r ∈ Q and r /∈ Q. Let α denote the Kripke-sequence generated from
r ∈ Q, and β that generated by r /∈ Q. Formally,

∃n(α(n) = 1) ↔ r ∈ Q

and
∃m(β(m) = 1) ↔ r /∈ Q. 22/34



4.4. Indecomposability of R \ {0} [3/3]
Theorem 4.4. R \ {0} is indecomposable.

We can then generate another sequence γ from α and β by setting
γ(2x) = α(x) and γ(2x+ 1) = β(x). We the define the function

cn :=

{
(−2)−n if ∀k ≤ n(γ(k) = 0)

(−2)−k if k ≤ n ∧ γ(k) = 1.

In the case where 1 does not appear in the sequence, then c = (cn)n =
0 ↔ ∀k(γ(k) = 0) ↔ r /∈ Q ∧ ¬r /∈ Q which is a contradiction. So
c ̸= 0. So we get that c ≥ 0 ∨ c ≤ 0. By construction, it follows that

c ≥ 0 ↔ ¬∃n(β(n) = 1) ↔ ¬r /∈ Q

and
c ≤ 0 ↔ ¬∃n(α(n) = 1) ↔ r /∈ Q.

Since r is arbitrary, we have ∀r ∈ R(r /∈ Q∨¬r /∈ Q). This, however, is
refuted by the indecomposability of R. So the decomposition of R \ {0}
into A+B could not have been proper.
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4.5. R \Q is Indecomposable
Theorem 4.5.

R \Q is indecomposable

”The indecomposability of R is a peculiar feature of constructive universa, it
shows that R is much more closely knit in constructive mathematics, than in
classically mathematics. The classically comparable fact is the topological
connectedness of R. In a way this characterizes the position of R: the only
(classically) connected subsets of R are the various kinds of segments. In
intuitionistic mathematics the situation is different; the continuum has, as
it were, a syrupy nature, one cannot simply take away one point. In the
classical continuum one can, thanks to the principle of the excluded third,
do so. To put it picturesquely, the classical continuum is the frozen
intuitionistic continuum. If one removes one point from the intuitionistic
continuum, there still are all those points for which it is unknown whether
or not they belong to the remaining part” (van Dalen, 1997)
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4.6. Philosophical Intuitions on the Continuum

”In traditional analysis, the continuum appeared as a set of its points; it
was considered merely as a special case of the basic logical relationship of
element and set [...] The fact, however, that it has parts, is a
fundamental property of the continuum; and so (in harmony with
intuition, so drastically offended against by todays ‘atomism’) this
relationship is taken as the basis for the mathematical treatment of the
continuum in Brouwer’s theory.” (Weyl, 1921)
”This is the real reason why the method used in delimiting subcontinua
and in forming continuous functions starts out from intervals and not
points as the primary elements of construction. Admittedly, a set also
has parts. Yet what distinguishes the parts of sets in the realm of the
‘divisible’ is the existence of ‘elements’ in the set-theoretical sense, that
is, that the existence of parts that themselves do not contain any further
parts [...] In contrast, it is part of the nature of the continuum that every
part of it can be further divided without limitation.” (Weyl, 1921)
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What does this mean for Topology?

• How do these ideas of the continuum extend into topology?
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5.1. What does this mean for Topology?

• How do these ideas of the continuum extend into topology?

Pointless Topology!
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5.2. Refresher on Frames & Locales [1/2]
Definition 5.1. A Lattice L is a complete lattice iff

every subset has a supremum (l.u.b.) and an infimum (g.l.b.).

Let L and L′ be lattices and f : L → L′.

Definition 5.2. f is a lattice homomorphism iff for any a, b ∈ L,

f(a ∨ b) = f(a) ∨ f(b)

f(a ∧ b) = f(a) ∧ f(b)

Let X be a topological space. We call Ω(X) a frame when it satisfies:
(1) For any xi ∈ Ω(X) where i ∈ I, their join

∨
xi ∈ Ω(X).

(2) For all b ∈ Ω(X) and A ⊆ Ω(X),

(
∨

A) ∧ b =
∨

{a ∧ b | a ∈ A}.
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5.2. Refresher on Frames & Locales [2/2]

• Frmop = Loc

• Ω : Top → Loc. We can go from topological spaces to the
‘lattice of opens’

• But to go from Loc to Top we need to define points in terms
of opens (this is what Brouwer does!)
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5.3. Points
Definition 5.3. A filter F is completely prime iff

for all collections (Ui)i∈I of open sets such that
∪

i∈I Ui ∈ F ,
we have that Ui ∈ F for some i ∈ I.

Definition 5.4. A topological space (X, τ) is called sober if

each completely prime filter is the neighbourhood filter,
N (x), of a unique x ∈ X.

• A point in a locale L is a completely prime filter F ⊆ L.
• We can get points out of neighbourhoods!
• “To represent the continuous connection of the points,

traditional analysis, given its shattering of the continuum into
a set of isolated points, had to have recourse to the concept
of a neighbourhood.” (Weyl, 1921)
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5.4. Spatial/Non-Spatial Locales

• A locale L is said to be spatial if it is isomorphic to a Ω(X).
• A locale L is said to have enough points if, given any two

opens U, V ∈ L, U = V if precisely the same points of L
belong to U as belong to V .

• But we can have non-spatial Locales!
• What does point-set topology have to say about these?
• “The question whether a given locale is spatial is intimately

related with the existence of appropriate ideal objects whose
existence typically hinges on the axiom of choice or one of its
variants.” (Blechschmidt, 2020)
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5.5. What is R?

• It is consistent with intuitionism that the reals are spatial and
also that they are not spatial.

• Since equality is not generally decidable in intuitionism, given
a point x, the equality R = R \ {x} ∪ {x} is not always
decidable.

• The van Dalen result holds only in the case of spatial reals.
• (Fourman & Hyland, 1979) showed that the compactness of

2ω and the local compactness of RD can fail in non-spatial
locales.

• While in classical analysis RC ∼= RD, in non-spatial locales
RC ⊆ RD.
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5.5. What is R?

• What are the decomposability properties of R in non-spatial
locales?

• Are the discrete cuts problematic? or is recomposition the
issue?

• The theory of locales provide us with a way of recovering
point-set topology from open sets (at least sober spaces which
contain all Hausdorff spaces!).

• We can also continue to do topology in contexts where we
don’t have choice principles.

• Intuitionism seems to provide us with a rich and fine-grained
theory of the continuum.
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“It is nonsense to regard the continuum as a finished being”
− Weyl, 1921
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