#### Shower of Semantics

Justus Becker, Xiaoshuang Yang, Gabri Abate

University of Amsterdam / ILLC

February 1, 2023

Justus Becker, Xiaoshuang Yang, Gabri Abate

Shower of Semantics

< 47 ▶

∃ →

## Outline



- c-Semantics and Definability
- Derived Set Semantics
- *d*-Definability
  - K4 and  $T_D$ -Spaces
  - GL and Scattered Spaces



Intuitionistic logic as a logic of space

# Topological Semantics (c-semantics)

Justus Becker, Xiaoshuang Yang, Gabri Abate

Recap from guest lecture:

- Topological Model  $\mathcal{M} = (X, \tau, \nu)$ 
  - $(X, \tau)$  is a topological space and v is a valuation

- ∢ /⊐ >

Recap from guest lecture:

- Topological Model *M* = (*X*, *τ*, *ν*) (*X*, *τ*) is a topological space and *ν* is a valuation
- c-semantics: interpreting ◊ as int (□ as cl)
   M, x ⊨ ◊φ iff ∀U ∈ τ such that x ∈ U, ∃y ∈ U with M, y ⊨ φ

4/39

イロト イヨト イヨト ・

Recap from guest lecture:

- Topological Model *M* = (*X*, *τ*, *ν*)
   (*X*, *τ*) is a topological space and *ν* is a valuation
- c-semantics: interpreting ◊ as int (□ as cl)
   M, x ⊨ ◊φ iff ∀U ∈ τ such that x ∈ U, ∃y ∈ U with M, y ⊨ φ
- Essentially like any other modal logic, we have seen:
  - topo-bisimulation
  - "topo-p-morphisms" (interior maps and open subspaces)
  - "topo-disjoint union" (topological sums)

4/39

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Theorem

#### (McKinsey and Tarski, 1944)

- S4 is complete wrt all topological spaces
- S4 is complete wrt any dense-in-itself metrizable space
- S4 is complete wrt the real line  $\mathbb{R}$
- S4 is complete wrt the rationals  $\mathbb{Q}$

#### Definition

A class of topological spaces K is **topologically definable** if there is a set of modal formulas  $\Gamma$  such that for each topological space X we have  $X \in K$  iff  $X \models_c \Gamma$ .

#### Definition

A class of topological spaces K is **topologically definable** if there is a set of modal formulas  $\Gamma$  such that for each topological space X we have  $X \in K$  iff  $X \models_c \Gamma$ .

#### Definable properties

- discreteness (by adding  $\Diamond p 
  ightarrow p$ )
- every closed subset is also open (S5)

• extremally disconnectedness (S4.2)

#### Definition

A class of topological spaces K is **topologically definable** if there is a set of modal formulas  $\Gamma$  such that for each topological space X we have  $X \in K$  iff  $X \models_c \Gamma$ .

#### Definable properties

- discreteness (by adding  $\Diamond p 
  ightarrow p$ )
- every closed subset is also open (S5)

extremally disconnectedness (S4.2)

#### Undefinabilities in c-semantics

- separation axioms  $(T_0, ..., T_4)$
- compactness and connectedness
- dense-in-itself

Justus Becker, Xiaoshuang Yang, Gabri Abate

#### Definition

Given a topology X and a set  $A \subseteq X$ , we say that  $x \in X$  is an **accumulation point** (limit point) of A if for every open neighbourhood U of x we have  $A \cap (U - \{x\}) \neq \emptyset$ .

#### Definition

Given a topology X and a set  $A \subseteq X$ , we say that  $x \in X$  is an **accumulation point** (limit point) of A if for every open neighbourhood U of x we have  $A \cap (U - \{x\}) \neq \emptyset$ .

We denote the set of accumulation points of A as d(A) which also called the **derivative** of A.

#### Definition

Given a topology X and a set  $A \subseteq X$ , we say that  $x \in X$  is an **accumulation point** (limit point) of A if for every open neighbourhood U of x we have  $A \cap (U - \{x\}) \neq \emptyset$ .

We denote the set of accumulation points of A as d(A) which also called the **derivative** of A.

#### Definition

A point x is called **isolated** (in A) if  $x \in A - d(A)$ .

Justus Becker, Xiaoshuang Yang, Gabri Abate

Let  $(X, \tau)$  be a topological space and  $\nu$ : Prop  $\rightarrow \mathcal{P}(X)$  a valuation, then  $\mathcal{M} = (X, \tau, \nu)$  is a modal d-model.

Let  $(X, \tau)$  be a topological space and  $\nu$ : Prop  $\rightarrow \mathcal{P}(X)$  a valuation, then  $\mathcal{M} = (X, \tau, \nu)$  is a modal d-model.

Truth of a modal formula in a state w of a model  $\mathcal{M}$  is defined by

9/39

Let  $(X, \tau)$  be a topological space and  $\nu$ : Prop  $\rightarrow \mathcal{P}(X)$  a valuation, then  $\mathcal{M} = (X, \tau, \nu)$  is a modal d-model.

Truth of a modal formula in a state w of a model  $\mathcal{M}$  is defined by

9/39

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some facts about the derived set operator

(日) (四) (日) (日) (日)

э

Some facts about the derived set operator

•  $cl(A) = A \cup d(A)$ 

э

10/39

イロト イポト イヨト イヨト

Some facts about the derived set operator

- $cl(A) = A \cup d(A)$
- $d(A \cup B) = d(A) \cup d(B)$

э

10 / 39

イロト イポト イヨト イヨト

Some facts about the derived set operator

- $cl(A) = A \cup d(A)$
- $d(A \cup B) = d(A) \cup d(B)$
- $d(d(A)) \subseteq A \cup d(A)$

10/39

Some facts about the derived set operator

- $cl(A) = A \cup d(A)$
- $d(A \cup B) = d(A) \cup d(B)$
- $d(d(A)) \subseteq A \cup d(A)$

This gives us the following axioms for d-semantics:

• 
$$\Diamond(p \lor q) \equiv \Diamond p \lor \Diamond q$$
 (K)  
•  $\Diamond \Diamond p \to p \lor \Diamond p$  (w4)

10/39

< ロ > < 同 > < 回 > < 回 > < 回 > <

Some facts about the derived set operator

- $cl(A) = A \cup d(A)$
- $d(A \cup B) = d(A) \cup d(B)$
- $d(d(A)) \subseteq A \cup d(A)$

This gives us the following axioms for d-semantics:

• 
$$\Diamond(p \lor q) \equiv \Diamond p \lor \Diamond q$$
 (K)  
•  $\Diamond \Diamond p \to p \lor \Diamond p$  (w4)

The logic K+w4 is called **weak K4** or **wK4**. It follows that wK4 is sound wrt d-semantics.

#### Theorem (Esakia, 2001)

The modal logic wK4 is sound and complete wrt all topological spaces.

Justus Becker, Xiaoshuang Yang, Gabri Abate

#### Theorem (Esakia, 2001)

The modal logic wK4 is sound and complete wrt all topological spaces.

To prove this we first give some notation: We denote the reflexive closure (resp. irreflexive fragment) of a frame  $\mathfrak{F} = (\mathcal{W}, R)$  as  $\overline{\mathfrak{F}} = (\mathcal{W}, \overline{R})$  (resp.  $\underline{\mathfrak{F}} = (\mathcal{W}, \underline{R})$ ).

#### Lemma

Let  $\mathfrak{F} = (X, R)$  be a wK4-frame and  $A \subseteq X$ . In  $\overline{\mathfrak{F}}$  we have  $d(A) = \underline{R}^{-1}(A)$ . (Whereas d(A) is defined in terms of  $\overline{\mathfrak{F}}$  being an Alexandroff space.)

#### Lemma

Let  $\mathfrak{F} = (X, R)$  be a wK4-frame and  $A \subseteq X$ . In  $\overline{\mathfrak{F}}$  we have  $d(A) = \underline{R}^{-1}(A)$ . (Whereas d(A) is defined in terms of  $\overline{\mathfrak{F}}$  being an Alexandroff space.)

That means, if R is initially irreflexive we have  $d(A) = R^{-1}(A)$ .

Justus Becker, Xiaoshuang Yang, Gabri Abate

#### Lemma

Let  $\mathfrak{F} = (X, R)$  be a wK4-frame and  $A \subseteq X$ . In  $\overline{\mathfrak{F}}$  we have  $d(A) = \underline{R}^{-1}(A)$ . (Whereas d(A) is defined in terms of  $\overline{\mathfrak{F}}$  being an Alexandroff space.)

That means, if R is initially irreflexive we have  $d(A) = R^{-1}(A)$ .

Proof of the theorem: See blackboard.

Theorem (Esakia, 2001)

The modal logic wK4 is sound and complete wrt all topological spaces.

Justus Becker, Xiaoshuang Yang, Gabri Abate

э

(日) (四) (日) (日) (日)

#### Topo-definability

We say that a class K of topological spaces is **topologically definable** or simply **topo-definable** if there exists a set of modal formulas  $\Gamma$  such that for each topological space  $\mathcal{X}$  we have  $\mathcal{X} \in K$  iff  $\mathcal{X} \models_c \Gamma$ .

#### Topo-definability

We say that a class K of topological spaces is **topologically definable** or simply **topo-definable** if there exists a set of modal formulas  $\Gamma$  such that for each topological space  $\mathcal{X}$  we have  $\mathcal{X} \in K$  iff  $\mathcal{X} \models_c \Gamma$ .

#### d-definability

We say that a class K of topological spaces is *d*-**definable** if there exists a set of modal formulas  $\Gamma$  such that for each topological space  $\mathcal{X}$  we have  $\mathcal{X} \in K$  iff  $\mathcal{X} \models_d \Gamma$ .

14 / 39

< □ > < □ > < □ > < □ > < □ > < □ >

# Expressive power d-Semantics > c-Semantics

Justus Becker, Xiaoshuang Yang, Gabri Abate

э

15 / 39

イロト イポト イヨト イヨト

# Expressive power d-Semantics > c-Semantics

• Topo-definability results will automatically transfer into *d*-definability results.

# Expressive power d-Semantics > c-Semantics

- Topo-definability results will automatically transfer into *d*-definability results.
- There are *d*-definable topological properties that are not topo-definable.

## K4 and $T_D$ -Spaces

Justus Becker, Xiaoshuang Yang, Gabri Abate

э

16/39

イロト イポト イヨト イヨト

#### $T_D$ -spaces

#### Definition

A topological space  $\mathcal{X}$  is said to satisfy the  $T_D$ -separation axiom or is simply  $T_D$  if for every point  $x \in \mathcal{X}$ , there exist an open U and closed F such that  $U \cap F = \{x\}$ .

< □ > < □ > < □ > < □ > < □ > < □ >
### $T_D$ -spaces

#### Definition

A topological space  $\mathcal{X}$  is said to satisfy the  $T_D$ -separation axiom or is simply  $T_D$  if for every point  $x \in \mathcal{X}$ , there exist an open U and closed Fsuch that  $U \cap F = \{x\}$ .

• Every  $T_1$  space is a  $T_D$  space.

< □ > < □ > < □ > < □ > < □ > < □ >

### $T_D$ -spaces

#### Definition

A topological space  $\mathcal{X}$  is said to satisfy the  $T_D$ -separation axiom or is simply  $T_D$  if for every point  $x \in \mathcal{X}$ , there exist an open U and closed Fsuch that  $U \cap F = \{x\}$ .

- Every  $T_1$  space is a  $T_D$  space.
- Every  $T_D$  space is a  $T_0$  space.

A B b A B b

#### d-Definability

# Property of $T_D$ -spaces

### Theorem

### A space $\mathcal{X}$ is $T_D$ iff $dd(A) \subseteq d(A)$ for every $A \subseteq \mathcal{X}$ .

э

18/39

イロト イボト イヨト イヨト

#### d-Definability

# Property of $T_D$ -spaces

### Theorem

A space  $\mathcal{X}$  is  $T_D$  iff  $dd(A) \subseteq d(A)$  for every  $A \subseteq \mathcal{X}$ .

Proof.

(⇒) Suppose 
$$x \notin d(A)$$
.

Then there is an open neighbourhood U of x such that  $U \setminus \{x\} \cap A = \emptyset$ . By  $T_D$  there are open V and closed F such that  $\{x\} = V \cap F$ . Then  $U \cap V$  is still an open neighbourhood of x. We show that  $(U \cap V) \cap d(A) = \emptyset$ :

Assume there is  $y \in (U \cap V) \cap d(A)$ . Then  $y \notin F$ , as  $V \cap F = \{x\}$ and  $y \neq x$ . So  $(U \cap V) \setminus F$  is an open neighbourhood of y that has empty intersection with A, which contradicts that  $y \in d(A)$ .

So  $x \notin Cl(d(A))$ . As  $d(A) \subseteq Cl(A)$ , we obtain that  $x \notin dd(A)$ .

(日)

э

# K4 and $T_D$ -spaces

#### Lemma

For any space  $\mathcal{X}$ ,  $dd(A) \subseteq d(A)$  for every  $A \subseteq \mathcal{X}$  iff  $\mathcal{X} \vDash_d \Diamond \Diamond p \to \Diamond p$ .

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

# K4 and $T_D$ -spaces

#### Lemma

For any space  $\mathcal{X}$ ,  $dd(A) \subseteq d(A)$  for every  $A \subseteq \mathcal{X}$  iff  $\mathcal{X} \vDash_d \Diamond \Diamond p \to \Diamond p$ .

Theorem (4 axiom d-defines the class of  $T_D$ -spaces.) A space  $\mathcal{X}$  is  $T_D$  iff  $\mathcal{X} \vDash_d \Diamond \Diamond p \to \Diamond p$ .

3

イロト 不得 トイヨト イヨト

# K4 and $T_D$ -spaces

#### Lemma

For any space  $\mathcal{X}$ ,  $dd(A) \subseteq d(A)$  for every  $A \subseteq \mathcal{X}$  iff  $\mathcal{X} \vDash_d \Diamond \Diamond p \to \Diamond p$ .

Theorem (4 axiom d-defines the class of  $T_D$ -spaces.) A space  $\mathcal{X}$  is  $T_D$  iff  $\mathcal{X} \vDash_d \Diamond \Diamond p \to \Diamond p$ .

#### Theorem

K4 is sound and complete wrt  $T_D$ -spaces.

3

イロト イヨト イヨト ・

### Definition

Let  $(\mathcal{X}, \tau)$  be a topological space. We say that two points x, y are **topologically distinguishable** if there exists an open neighbourhood  $U_{x,y}$ such that either  $x \in U_{x,y}$  and  $y \notin U_{x,y}$  or  $y \in U_{x,y}$  and  $x \notin U_{x,y}$ . We say that the space  $\mathcal{X}$  is  $T_0$  if all pairs of points are topologically distinguishable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

### Definition

Let  $(\mathcal{X}, \tau)$  be a topological space. We say that two points x, y are **topologically distinguishable** if there exists an open neighbourhood  $U_{x,y}$ such that either  $x \in U_{x,y}$  and  $y \notin U_{x,y}$  or  $y \in U_{x,y}$  and  $x \notin U_{x,y}$ . We say that the space  $\mathcal{X}$  is  $T_0$  if all pairs of points are topologically distinguishable.

Let  $t_0 = p \land \Diamond (q \land \Diamond p) \rightarrow \Diamond p \lor \Diamond (q \land \Diamond q).$ 

イロト イヨト イヨト ・

### Definition

Let  $(\mathcal{X}, \tau)$  be a topological space. We say that two points x, y are **topologically distinguishable** if there exists an open neighbourhood  $U_{x,y}$ such that either  $x \in U_{x,y}$  and  $y \notin U_{x,y}$  or  $y \in U_{x,y}$  and  $x \notin U_{x,y}$ . We say that the space  $\mathcal{X}$  is  $T_0$  if all pairs of points are topologically distinguishable.

Let 
$$t_0 = p \land \Diamond (q \land \Diamond p) \rightarrow \Diamond p \lor \Diamond (q \land \Diamond q).$$

Theorem (G. Bezhanishvili, Esakia, Gabelaia, 2011)

Let  $\mathcal{X}$  be a topological space. Then  $\mathcal{X} \vDash t_0$  iff  $\mathcal{X}$  is  $T_0$ .

20 / 39

< □ > < □ > < □ > < □ > < □ > < □ >

### Definition

Let  $(\mathcal{X}, \tau)$  be a topological space. We say that two points x, y are **topologically distinguishable** if there exists an open neighbourhood  $U_{x,y}$ such that either  $x \in U_{x,y}$  and  $y \notin U_{x,y}$  or  $y \in U_{x,y}$  and  $x \notin U_{x,y}$ . We say that the space  $\mathcal{X}$  is  $T_0$  if all pairs of points are topologically distinguishable.

Let 
$$t_0 = p \land \Diamond (q \land \Diamond p) \rightarrow \Diamond p \lor \Diamond (q \land \Diamond q).$$

Theorem (G. Bezhanishvili, Esakia, Gabelaia, 2011)

Let  $\mathcal{X}$  be a topological space. Then  $\mathcal{X} \vDash t_0$  iff  $\mathcal{X}$  is  $T_0$ .

Let  $wK4T_0 := wK4 + t_0$ .

20 / 39

< ロ > < 同 > < 回 > < 回 > < 回 > <

### Definition

Let  $(\mathcal{X}, \tau)$  be a topological space. We say that two points x, y are **topologically distinguishable** if there exists an open neighbourhood  $U_{x,y}$ such that either  $x \in U_{x,y}$  and  $y \notin U_{x,y}$  or  $y \in U_{x,y}$  and  $x \notin U_{x,y}$ . We say that the space  $\mathcal{X}$  is  $T_0$  if all pairs of points are topologically distinguishable.

Let 
$$t_0 = p \land \Diamond (q \land \Diamond p) \rightarrow \Diamond p \lor \Diamond (q \land \Diamond q).$$

Theorem (G. Bezhanishvili, Esakia, Gabelaia, 2011)

Let  $\mathcal{X}$  be a topological space. Then  $\mathcal{X} \vDash t_0$  iff  $\mathcal{X}$  is  $T_0$ .

Let  $wK4T_0 := wK4 + t_0$ .

### Theorem

wK4T<sub>0</sub> is sound and complete wrt  $T_0$ -spaces.

# GL and Scattered Spaces

Justus Becker, Xiaoshuang Yang, Gabri Abate

э

< □ > < 同 > < 回 > < 回 > < 回 >

### Scattered spaces

Isolated points

A point x is called **isolated** (in A) if  $x \in A - d(A)$ .

э

22 / 39

< □ > < □ > < □ > < □ > < □ > < □ >

# Scattered spaces

### Isolated points

A point x is called **isolated** (in A) if  $x \in A - d(A)$ .

### Definition (scattered spaces)

A topological space  $\mathcal{X}$  is called **scattered** if every non-empty subset of  $\mathcal{X}$  has an isolated point.

22 / 39

# Scattered spaces

### Isolated points

A point x is called **isolated** (in A) if  $x \in A - d(A)$ .

### Definition (scattered spaces)

A topological space  $\mathcal{X}$  is called **scattered** if every non-empty subset of  $\mathcal{X}$  has an isolated point.

The class of scattered spaces is not topo-definable in *c*-semantics.

22 / 39

d-Definability

### Examples of scattered spaces

• Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .

Justus Becker, Xiaoshuang Yang, Gabri Abate

Shower of Semantics

February 1, 2023

э

- Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .
- **2** The Sierpinski space  $\mathcal{X} = \{a, b\}$  with topology  $\{\emptyset, \{a\}, \mathcal{X}\}$ .

3

イロト 不得 トイヨト イヨト

- Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .
- **2** The Sierpinski space  $\mathcal{X} = \{a, b\}$  with topology  $\{\emptyset, \{a\}, \mathcal{X}\}$ .
- Let  $\mathbb{R}$  be the real line equipped with the Euclidean topology au.

< □ > < □ > < □ > < □ > < □ > < □ >

- Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .
- **2** The Sierpinski space  $\mathcal{X} = \{a, b\}$  with topology  $\{\emptyset, \{a\}, \mathcal{X}\}$ .
- Let  $\mathbb{R}$  be the real line equipped with the Euclidean topology  $\tau$ .
  - Define a new topology τ' on ℝ as follows:
    a subset A ∈ τ' iff A = B ∪ C, where B ∈ τ and C ⊆ ℝ − ℚ.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .
- **2** The Sierpinski space  $\mathcal{X} = \{a, b\}$  with topology  $\{\emptyset, \{a\}, \mathcal{X}\}$ .
- Let  $\mathbb{R}$  be the real line equipped with the Euclidean topology au.
  - Define a new topology τ' on ℝ as follows:
    a subset A ∈ τ' iff A = B ∪ C, where B ∈ τ and C ⊆ ℝ − ℚ.
  - Any singleton of an irrational number is clopen in  $(\mathbb{R}, \tau')$ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .
- **2** The Sierpinski space  $\mathcal{X} = \{a, b\}$  with topology  $\{\emptyset, \{a\}, \mathcal{X}\}$ .
- Let  $\mathbb R$  be the real line equipped with the Euclidean topology au.
  - Define a new topology τ' on ℝ as follows:
    a subset A ∈ τ' iff A = B ∪ C, where B ∈ τ and C ⊆ ℝ − ℚ.
  - Any singleton of an irrational number is clopen in  $(\mathbb{R}, \tau')$ .
  - Let  $\mathbb{I} = \mathbb{R} \mathbb{Q}$  be the set of irrational numbers, and let  $\tau''$  be the subspace topology on  $\mathbb{I}$  of  $\mathbb{R}$  under  $\tau'$ :

23 / 39

イロト イヨト イヨト ・

- Discrete topology  $(\mathcal{X}, \mathcal{P}(\mathcal{X}))$ .
- **2** The Sierpinski space  $\mathcal{X} = \{a, b\}$  with topology  $\{\emptyset, \{a\}, \mathcal{X}\}$ .
- Let  $\mathbb{R}$  be the real line equipped with the Euclidean topology au.
  - Define a new topology τ' on ℝ as follows:
    a subset A ∈ τ' iff A = B ∪ C, where B ∈ τ and C ⊆ ℝ − ℚ.
  - Any singleton of an irrational number is clopen in  $(\mathbb{R}, \tau')$ .
  - Let  $\mathbb{I} = \mathbb{R} \mathbb{Q}$  be the set of irrational numbers, and let  $\tau''$  be the subspace topology on  $\mathbb{I}$  of  $\mathbb{R}$  under  $\tau'$ :
  - Then  $(\mathbb{I}, \tau'')$  is scattered, since every point in it is isolated.

#### d-Definability

# Property of scattered-spaces

### Theorem

### A space $\mathcal{X}$ is scattered iff $d(A) = d(A \setminus d(A))$ for every $A \subseteq \mathcal{X}$ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

#### d-Definability

# Property of scattered-spaces

### Theorem

A space  $\mathcal{X}$  is scattered iff  $d(A) = d(A \setminus d(A))$  for every  $A \subseteq \mathcal{X}$ .

Proof.

(⇔)

Let  $A \subseteq \mathcal{X}$  be nonempty. We show that A has an isolated point.

- If d(A) is empty, we are done.
- Otherwise, take any  $x \in d(A)$ , so  $x \in d(A \setminus d(A))$ . Since x is a limit of isolated points of A, there must be at least one such point.

< ロト < 同ト < ヨト < ヨト

### Proof continues (⇒)

Suppose  $\mathcal{X}$  is scattered,  $A \subseteq \mathcal{X}$  and  $x \in d(A)$ .

Consider any open neighborhood U of x. Since  $U \cap A$  is nonempty, it has an isolated point y.

- If y = x, this contradicts with x ∈ d(A). Suppose x is isolated in U ∩ A. Then there is an open neighbourhood V of x and V ∩ (U ∩ A) = {x}. But V ∩ (U ∩ A) = (V ∩ U) ∩ A and V ∩ U is also an open neighbourhood of x, which leads to a contradiction.
- If  $y \neq x$ , then there is a open neighbourhood J of y and  $J \cap (U \cap A) = \{y\}$ . Since  $J \cap (U \cap A) = (J \cap U) \cap A$  and  $J \cap U$  is also an open neighbourhood of y, y is an isolated point of A, that is,  $y \in A \setminus d(A)$ .

Hence,  $x \in d(A \setminus d(A))$ . The inclusion  $d(A \setminus d(A)) \subseteq d(A)$  follows from the monotonicity of d. Therefore,  $d(A) = d(A \setminus d(A))$  holds.

#### d-Definability

# GL and scattered spaces

#### Lemma

# For any space $\mathcal{X}$ , $d(A) = d(A \setminus d(A))$ for every $A \subseteq \mathcal{X}$ iff $\mathcal{X} \vDash_d \Box(\Box p \rightarrow p) \rightarrow \Box p$ .

イロト 不得下 イヨト イヨト

э

# GL and scattered spaces

#### Lemma

For any space  $\mathcal{X}$ ,  $d(A) = d(A \setminus d(A))$  for every  $A \subseteq \mathcal{X}$  iff  $\mathcal{X} \vDash_d \Box(\Box p \rightarrow p) \rightarrow \Box p$ .

Theorem (Esakia, Simmons, Löb d-defines the class of scattered spaces) A space  $\mathcal{X}$  is scattered iff  $\mathcal{X} \vDash_d L\ddot{o}b$ .

26 / 39

# GL and scattered spaces

#### Lemma

For any space  $\mathcal{X}$ ,  $d(A) = d(A \setminus d(A))$  for every  $A \subseteq \mathcal{X}$  iff  $\mathcal{X} \vDash_d \Box(\Box p \rightarrow p) \rightarrow \Box p$ .

Theorem (Esakia, Simmons, Löb d-defines the class of scattered spaces) A space  $\mathcal{X}$  is scattered iff  $\mathcal{X} \vDash_d L\ddot{o}b$ .

The Gödel-Löb provability logic GL is obtained by adding to K the Löb formula  $\Box(\Box p \rightarrow p) \rightarrow \Box p$ .

イロト イヨト イヨト ・

# GL and scattered spaces

#### Lemma

For any space  $\mathcal{X}$ ,  $d(A) = d(A \setminus d(A))$  for every  $A \subseteq \mathcal{X}$  iff  $\mathcal{X} \vDash_d \Box(\Box p \rightarrow p) \rightarrow \Box p$ .

Theorem (Esakia, Simmons, Löb d-defines the class of scattered spaces) A space  $\mathcal{X}$  is scattered iff  $\mathcal{X} \vDash_d L\ddot{o}b$ .

The Gödel-Löb provability logic GL is obtained by adding to K the Löb formula  $\Box(\Box p \rightarrow p) \rightarrow \Box p$ .

Theorem (Esakia, 1981)

GL is sound and complete wrt scattered spaces.

3

26 / 39

< ロ > < 同 > < 回 > < 回 > < 回 > <

### d-Semantics

- c-Semantics and Definability
- Derived Set Semantics
- *d*-Definability
  - K4 and T<sub>D</sub>-Spaces
  - GL and Scattered Spaces



- (日)

# Intuitionistic Propositional Calculus (IPC)

### Definition (Language $\mathcal{L}_{int}$ )

$$\mathcal{L}_{\textit{int}} := \{ \land, \lor, \rightarrow, \bot \}$$

### Intuitionistic Propositional Calculus

$$\begin{array}{l} \mathsf{Ax-1} \hspace{0.1cm} \varphi \rightarrow (\psi \rightarrow \varphi) \\ \mathsf{Ax-2} \hspace{0.1cm} (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)) \\ \mathsf{Ax-3} \hspace{0.1cm} \varphi \wedge \psi \rightarrow \varphi \\ \mathsf{Ax-4} \hspace{0.1cm} \varphi \wedge \psi \rightarrow \psi \\ \mathsf{Ax-5} \hspace{0.1cm} \varphi \rightarrow \varphi \lor \psi \\ \mathsf{Ax-6} \hspace{0.1cm} \psi \rightarrow \varphi \lor \psi \\ \mathsf{Ax-7} \hspace{0.1cm} (\varphi \rightarrow \chi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \lor \psi \rightarrow \chi)) \\ \mathsf{Ax-8} \hspace{0.1cm} \bot \rightarrow \varphi \end{array}$$

< A

# **BHK-semantics**

### Informal clauses

- A proof of  $\varphi \wedge \psi$  consists of a proof of  $\varphi$  and a proof of  $\psi$ ;
- A proof of  $\varphi \lor \psi$  consists of a proof of  $\varphi$  or a proof of  $\psi$ ;
- A proof of  $\varphi \to \psi$  consists of a method which turns a proof of  $\varphi$  into a proof of  $\psi$ ;
- A proof of ¬φ consists of a method which turns a proof of φ into a proof of ⊥;
- $\perp$  has no proof.

< □ > < □ > < □ > < □ > < □ > < □ >

# IPC vs CPC

Famously, some classical theorems are not intuitionistically valid:

Law of excluded middle (LEM)  $\forall_{IPC} \varphi \lor \neg \varphi$ 

Peirce's law  $\forall_{IPC} ((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi)$ 

Double negation elimination (DNE)  $\forall IPC \neg \neg \varphi \rightarrow \varphi$ 

Justus Becker, Xiaoshuang Yang, Gabri Abate

# **Topological semantics**

### Definition (Topological model)

A topological model is a triple  $\mathcal{T} = (X, \tau, v)$ , where  $(X, \tau)$  is a topological space, and  $v : \operatorname{Prop} \to \tau$ .

### Definition (Truth-set)

Let  ${\mathcal T}$  be a topological model, and  $\alpha,\,\beta$  be arbitrary formulas. Then:

• 
$$p_{\mathcal{T}} = v(p)$$

• 
$$\perp_{\mathcal{T}} = \emptyset$$

• 
$$\alpha \wedge \beta_{\mathcal{T}} = \alpha_{\mathcal{T}} \cap \beta_{\mathcal{T}}$$

• 
$$\alpha \lor \beta_{\mathcal{T}} = \alpha_{\mathcal{T}} \cup \beta_{\mathcal{T}}$$

• 
$$\alpha \to \beta_{\mathcal{T}} = Int(\alpha_{\mathcal{T}}^{\mathsf{c}} \cup \beta_{\mathcal{T}})$$

• 
$$\neg \alpha_{\mathcal{T}} = Int(\alpha_{\mathcal{T}}^{c})$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

# Countermodel to LEM

### Countermodel

Take  $X = \mathbb{R}$ . Set  $v(p) = \mathbb{R}^+$ .

#### Proof.

Then  $\neg p = \mathbb{R}^-$ . But  $p \lor \neg p = \mathbb{R}^+ \cup \mathbb{R}^- = \mathbb{R} \setminus \{0\} \neq \mathbb{R}$ .

Justus Becker, Xiaoshuang Yang, Gabri Abate

3

32 / 39

イロト イヨト イヨト ・
## Countermodel to Peirce's Law

#### Countermodel

Take  $X = \mathbb{R}$ . Set  $v(p) = \mathbb{R} \setminus \{0\}$  and  $v(q) = \emptyset$ .

#### Proof.

$$\begin{array}{l} p \to q = \operatorname{Int}(p^c \cup q) = \operatorname{Int}(\{0\} \cup \emptyset) = \emptyset.\\ (p \to q) \to p) = \operatorname{Int}(\mathbb{R} \cup \mathbb{R}) = \mathbb{R}.\\ ((p \to q) \to p) \to p) = \operatorname{Int}(\emptyset \cup (\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0\} \neq \mathbb{R}.\end{array}$$

Justus Becker, Xiaoshuang Yang, Gabri Abate

э

33 / 39

< □ > < □ > < □ > < □ > < □ > < □ >

# Countermodel to DNE

#### Countermodel

Take  $X = \{0, 1\}$ , with  $\tau = \{\emptyset, X, \{0\}\}$ . Set  $v(p) = \{0\}$ .

## Proof. $\neg \neg p = X.$ $\neg \neg p \rightarrow p = Int(\emptyset \cup \{0\}) = \{0\} \neq X.$

Justus Becker, Xiaoshuang Yang, Gabri Abate

3

34 / 39

# Heyting Algebra

## Definition (Heyting algebra)

An **Heyting algebra**  $\mathfrak{A}$  is an algebraic structure  $(A, \land, \lor, \rightarrow, 0, 1)$  such that:

- $(A, \land, \lor, 0, 1)$  is a bounded lattice;
- The  $\rightarrow$  operation is defined as follows:

$$x \rightarrow x = 1$$

$$\begin{aligned} x \wedge (x \to y) &= x \wedge y \\ (x \to y) \wedge y &= y \\ x \to (y \wedge z) &= (x \to y) \wedge (x \to z) \end{aligned}$$

•  $\neg a := a \rightarrow 0.$ 

э

35 / 39

< □ > < □ > < □ > < □ > < □ > < □ >

4

# Examples of Heyting algebras

#### Example 1

Every chain  $\mathfrak{C}$  with a least and a greatest element is a Heyting algebra satisfying:

$$a o b = egin{cases} 1 & ext{if } a \leq b \ b & ext{if } a > b. \end{cases}$$

#### Example 2

Consider  $(X, \tau)$  topological space. An algebraic structure  $(\tau, \land, \lor, \rightarrow, 0, 1)$  is a Heyting algebra, with:

$$U \rightarrow V := Int(U^c \cup V)$$

for  $U, V \in \tau$ .

э

- ∢ ⊒ →

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

# Examples of Heyting algebras

#### Example 3

Every Boolean algebra  ${\mathfrak B}$  is a Heyting algebra, where we have:

$$a \rightarrow b = \neg a \lor b$$

for  $a, b \in B$ .

## Proposition (N. Bezhanishvili, de Jongh)

Let  $\mathfrak{A}$  be a Heyting algebra. The following are equivalent:

•  $\mathfrak{A}$  is a Boolean algebra;

• 
$$a \lor \neg a = 1$$
 for all  $a \in A$ ;

•  $\neg \neg a = a$  for all  $a \in A$ .

A B A A B A

# Algebraic semantics

## Definition (Algebraic model for IPC)

Let  $\mathfrak{A}$  be a Heyting algebra. Then  $\mathcal{A} = (\mathfrak{A}, v)$  is an algebraic model for IPC, where the valuation function  $v : \operatorname{Prop} \to A$  is defined as follows:

• 
$$\mathbf{v}(\varphi \land \psi) = \mathbf{v}(\varphi) \land \mathbf{v}(\psi)$$
  
•  $\mathbf{v}(\varphi \lor \psi) = \mathbf{v}(\varphi) \lor \mathbf{v}(\psi)$ 

• 
$$v(\varphi \rightarrow \psi) = v(\varphi) \rightarrow v(\psi)$$

• 
$$v(\perp) = 0$$

## Definition (Validity)

A formula  $\varphi$  is **valid** in an algebra  $\mathfrak{A}$  (written  $\mathfrak{A} \models \varphi$ ) iff, for every valuation v on  $\mathfrak{A}$ ,  $v(\varphi) = 1$ .

< □ > < □ > < □ > < □ > < □ > < □ >

## Soundness and completeness

#### Theorem (Algebraic soundness)

If  $\vdash_{IPC} \varphi$ , then  $\mathfrak{A} \models \varphi$ , for all  $\mathfrak{A} \in HA$ .

# Theorem (Algebraic completeness (Jaśkowski 1936, Tarski-McKinsey 1946))

IPC is complete with respect to finite Heyting algebras, that is, if  $\mathfrak{A} \models \varphi$  then  $\vdash_{IPC} \varphi$ , for  $\mathfrak{A}$  finite Heyting algebra.

39 / 39

A B M A B M