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Overview

Lattice Theory

Spaces ⇐⇒ Locales

Spaces ⇐⇒ Algebras

Motivations for

Duality
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Motivation



Motivation

Semantics paradigms

• Algebraic semantics

• Topological semantics

Example: Intuitionistic logic

• Algebraic semantics: Heyting algebras

• Topological semantics: S4 Kripke frames
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First steps

Basics in both fields

• Topology

• Lattice theory
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Basic Lattice Theory



Partial orders

Partial Order

Tuple ⟨X ,R⟩ such that

1. R reflexive

2. R transitive

3. R antisymmetric
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Lattices

Lattice

Tuple ⟨X ,R, ∧, ∨⟩ such that

1. ⟨X ,R⟩ a partial order

2. x ∧ y = y ∧ x (Commutativity)

3. x ∨ (y ∨ z) = (x ∨ y) ∨ z (Associativity)

4. x ∧ x = x (Idempotence)

5. x ∨ (y ∧ x) = x (Absorption)
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Lattice homomorphisms

Structure-preserving map between lattices (categorically analogous

to continuous maps between topological spaces).

Lattice homomorphism

Map f : L → L′ such that

1. f (x ∧ y) = f (x) ∧ f (y)

2. f (x ∨ y) = f (x) ∨ f (y)
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Important lattice sub-types

Distributive lattices

Lattice ⟨X ,R, ∧, ∨⟩ such that

1. x∧(y∨z) = (x∧y)∨(x∧z)
2. x∨(y∧z) = (x∨y)∧(x∨z)

Complete lattices

Lattice ⟨X ,R, ∧, ∨⟩ such that

1. M ⊆ L =⇒
∧
M ∈ L

2. M ⊆ L =⇒
∨
M ∈ L

where L is our lattice.
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Boolean algebras

• Lattice with additional structure

• Complement

• Top

• Bottom

• Complete semantics for classical logic

• Complement → ”Not”

• Top → ”True”

• Bottom → ”False”
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Boolean algebras (cont.)

Boolean algebra

Tuple ⟨A,∧,∨,′ , 0, 1⟩ such that

1. ⟨A,∧,∨⟩ a distributive lattice

2. x ∧ 0 ≈ 0, x ∨ 1 ≈ 1 (Identities)

3. x ∧ x ′ ≈ 0, x ∨ x ′ ≈ 1 (Complements)
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Boolean algebras (cont.)

Example: Power sets

Claim: Given set X , P(X ) forms a Boolean algebra

⟨P(X ),∩,∪, · ,∅,X ⟩.
Proof: Where U,V ,W are arbitrary subsets of X (and, therefore,

members of P(X )) ...

1. ⟨P(X ),∩,∪, ⟩ is a distributive lattice
1.1 ⟨P(X ),⊆⟩ is a partial order

1.2 U ∩ V = V ∩ U (Commutativity)

1.3 U ∪ (V ∪W ) = (U ∪ V ) ∪W (Associativity)

1.4 U ∩ U = U (Idempotence)

1.5 U ∪ (V ∩ X ) (Absorption)

1.6 U ∪ (V ∩W ) = (U ∪ V ) ∩ (U ∪W ) (Distributivity)

2. U ∩∅ = ∅ (Identities)

3. U ∩ U = ∅ (Complements) 10



Filters & ideals

Given a Boolean algebra A ...

Filter

Subset F ⊆ A such that

1. 1 ∈ F

2. x , y ∈ F =⇒ x ∧ y ∈ F

3. x ∈ F & xRy =⇒ y ∈ F

Ideal

Subset I ⊆ A such that

1. 0 ∈ I

2. x , y ∈ I =⇒ x ∨ y ∈ I

3. y ∈ I & xRy =⇒ x ∈ I
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Example Filter

1

• • •

• • •

0
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Example Ideal

1

• • •

• • •

0
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Ultrafilters & maximal ideals

Ultrafilter

Filter F that is maximal with

respect to the property that

0 /∈ F .

Maximal Ideal

Ideal I that is maximal with

respect to the property that

1 /∈ F .

Note that ‘ultrafilters’ also go by the names ‘maximal filters’ and

‘fluffy filters’.
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Boolean Representation Theorem



The Theorem

Our Goal
Provide a means of changing between Boolean Algebras and

certain Topological Spaces.
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Stone Spaces

Stone Space
A Topological Space which is Hausdorff, Compact, and has a basis

of clopens is a Stone Space.
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Proof Structure

Boolean Algebra and Stone Space

Stone Space Boolean Algebra

Ultrafilter Stone Space Clopen Algebra
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Algebra Space

Our Construction
Given a Boolean Algebra B, we define B∗ to be the set of

ultrafilters on B with the topology generated by

Na := {U ∈ B∗ | a ∈ U}

for each a ∈ B
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Basis of Clopens

Proof

We know ∀U a ∨ a = 1 ∈ U,

so a ∈ U or a ∈ U

which means U ̸∈ Na → a ̸∈ U

→ a ∈ U

→ U ∈ Na

Thus, Na = Na and our basis is a basis of clopens.
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Hausdorff

Proof
Let U1 ̸= U2. Pick a ∈ U1 − U2. Thus, a ∈ U1 and a ∈ U2 so

Na ∩ Na = ∅, U1 ∈ Na, and U2 ∈ Na.
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Compactness

Proof
Let (Na)a∈J for a ∈ J ⊆ B be a cover of B∗. First, we assume that

there exists a finite J0 ⊆ J such that
∨
J0 = 1.
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Compactness

Proof

Since
∨

J0 = 1

we know ∀U
∨

J0 ∈ U

or ∀U a1 ∨ a2 . . . ∨ an ∈ U

by maximality ∃ai ∈ U

so U ∈ Nai .
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Compactness

Proof
Now, let us assume that no finite subset of J has 1 in its join.

Thus, J ⊂ M where M is a maximal ideal.
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Compactness

Proof

Let U = M

since J ⊂ M

we know J ∩ U = ∅
so ∀a ∈ J a ̸∈ U

which means U ̸∈ (Na)a∈J .

�
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Compactness

Full Proof
Let (Na)a∈J for a ∈ J ⊆ B be a cover of B∗. First, let us assume

that for all finite J0 ⊆ J,
∨
J0 ̸= 1. Thus, J ⊆ M where M is a

maximal ideal. Let F be an ultrafilter such that F = M. Since

J ⊆ M, we know that F ∩ J = ∅. Thus, for all a ∈ J, F ̸∈ Na. This

contradicts the fact that (Na)a∈J is a cover. Thus, there must

exist a finite J0 ⊆ J such that
∨
J0 = 1.

Furthermore, this means that for all ultrafilters U,
∨
J0 ∈ U.

Thus, since ultrafilters are maximal, for all U ∈ B∗, ∃a ∈ J0 such

that a ∈ U and thus U ∈ Na. This means that (Na)a∈J0 is a finite

cover of B∗.
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Space to Algebra

Stone Space to Boolean Algebra
If X is a Stone Space, take the sub-Algebra of the Powerset

Algebra that contains only the clopen subsets of X . Call this

Boolean Algebra X ∗.
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Proving the Duality

1. We want to show that B ∼= B∗∗

2. and X ∗∗ ∼= X .
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B ∼= B∗∗

Isomorphism
Define f : a → Na. We want to show this is an isomorphism.

Homomorphism

U ∈ Na ∪ Nb ⇐⇒ U ∈ Na or U ∈ Nb

⇐⇒ a ∈ U or b ∈ U

⇐⇒ a ∨ b ∈ U

⇐⇒ U ∈ Na∨b
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Injectivity

Proof
Let a ̸= b.

Thus (a ∧ b) ∨ (a ∨ b) ̸= 0

so (a ∧ b) ∨ (a ∨ b) ̸∈ M.

Let U = M

by closure a ∧ b ∈ U and(a ∨ b) ∈ U

so Na ̸= Nb.
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Surjectivity

Proof
Let N be clopen in B∗. Thus N has an open cover (N is open),

and N is compact (N is closed). Thus, N = Na1∨a2...∨an = Nb.
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Isomorphism

Homomorphism

+

Injectivity

+

Surjectivity

=

Isomorphism
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X ∼= X ∗∗

Homeomorphism
Define f : x → {N ∈ X ∗ | x ∈ N}.

Injectivity
f (x) is an ultrafilter on X ∗ and from X being Hausdorff, f is

injective.
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Surjectivity

Proof
X ∗∗ is a topology of ultrafilters on X ∗. Take U ∈ X ∗. This has the

finite intersection property, so by compactness
⋂
U ̸= ∅. Take

x ∈
⋂
U, we know that U ⊂ f (x), so U = f (x) by maximality.
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Homeomorphism

Clopens in X ∗∗

Using our definitions: {U | N ∈ U} where N is clopen in X .

Open
f (N) = {U | ∃x ∈ N f (x) = U} which mean f (N) = {U | N ∈ U}
(since N is clopen).

Continuous
f −1{U | N ∈ U} = {x ∈ X | f (x) = U} = {x ∈ X | x ∈ N} = N.
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Summary

1. Powerset Algebra provides an intuition about algebraic spaces.

2. The set of clopens forms an algebra and an ultrafilter.

3. Our “stone” operation is a duality/equivalence.
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Locale Theory



Bridges in mathematics

Static vs Dynamic unification (Caramello)

Algebras

Boolean Algebras Generalisation Heyting Algebras

Locales

Topological Spaces Bridges Lattices
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Bridges in mathematics (cont.)

• The Boolean Representation Theorem is hinting at a bridge

• What is this bridge?

• Can we obtain interesting results?

• A warning: we will not get to the BRT in this talk

• Reason: things are slightly complicated
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The full picture

Topological Spaces Locales

Sober Spaces Spatial Locales

Coherent Spaces Coherent Locales

Distributive Lattices

Stone Spaces Boolean Algebras

Stone Bool CABA

Sets

Ω

pt

Restrict Restrict

Ω

pt

Ω

spec

Restrict Restrict
Restrict

Restrict Restrict

Restrict Restrict

Ω

spec

⊣

Ind−Pro Completion
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Today

We will cover the beginning

The rest is left as an exercise
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Concepts in category theory

Category

A collection of mathematical

objects of the same type

paired with the collection of

structure-preserving maps

between them.

Examples:

• (Groups, group

homomorphisms)

• (Sets, functions)

• (Posets, monotone maps)

Dual

Given a category C, the dual

of C (denoted Cop for

‘opposite’), is C with all of the

arrows flipped.

Note: These are not

set-theoretic function inverses!

Equivalence

Two categories are equivalent

if they are indistinguishable,

modulo presentation.

Note: If they are as in the

proof of the BRT.
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From spaces to locales: Spaces

• Topological space X = (X , τ)

• X 7→ X ”Forget”

• X 7→ τ ”Lattice of opens”

• Do we keep ”enough” topological data?

• Top

• Category of topological spaces

• Objects: topological spaces

• Maps: continuous maps
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From spaces to locales: Frames and Ω

• Define Ω : X 7→ τ

• Sends each topology on a space to its ”lattice of opens”

• Is this an algebraic object? Specifically: a lattice?

• Yes, and yes!

• Since ∅, {X} ∈ τ , we have 0 and 1

• Form the lattice-like structure under ⊆ as the ≤ relation

• This gives us a (bounded) partial order

• τ is closed under finite intersections and arbitrary unions

Therefore, the lattice-like structure is closed under finite

meets and arbitrary joins

• Hence, a lattice
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From spaces to locales: Frames and Ω (cont.)

• We define a frame to be a complete lattice such that it is
infinitely join-distributive: a ∧ (

∨
S) =

∨
{a ∧ s : s ∈ S}

• Compare this with a topology being closed under arbitrary

unions and finite intersections

• We will call the category of frames and frame-homomorphisms

’Frm’
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From spaces to locales: Frames and Ω (cont.)

Topological Spaces Frames

Ω
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From spaces to locales: Locales

• Loc

• The dual of Frm

• ”homomorphisms” in Loc are called ’continuous maps’

• Hints at the topological connection

• The natural corresponding place for the ”lattice of opens” of

spaces
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From spaces to locales: Overview of structures

Complete Heyting Algebras Frames Locales

Heyting homomorphisms Frame homomorphisms Continuous maps
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From spaces to locales: Ω

Topological Spaces Locales

Ω
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From locales to spaces

Key question: can we go back?
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From locales to spaces: points

• To go from a locale to a space, we need points again

• Since (topological) spaces have points
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From locales to spaces: points (cont.)

• Define a point in a locale, A, as a (continuous) map: 2 −→ A

• Easier to see as a frame homomorphism

• A −→ 2

• Compare with Boolean algebras!
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From locales to spaces: points (cont.)

Another motivation

Points in Set

{∗} Xx
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From locales to spaces: points (cont.)

Points in Top

({∗}, τ0) (X , τ)x

(Where τ0 is the trivial topology)

52



From locales to spaces: points (cont.)

• Always: Ω(({∗}, τ0)) = 2

• Let Ω((X , τ)) = A ∈ Loc.
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From locales to spaces: points (cont.)

Points in Loc

Ω({∗}, τ0) = 2 Aa

54



From locales to spaces: points (cont.)

Points in Frm

A 2a
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Points (cont.)

TOP LOC FRM

A Ω(A) Ω(A)

1 Ω(1) = 2 Ω(1) = 2

a Ω(a) Ω(a)op
Ω Dualize
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From locales to spaces: Points (cont.)

What are these points, more precisely?

• Points = Homomorphisms

• Will often look from the ”Frame perspective”

• Each point corresponds to a choice of principal prime ideals

• Downsets

• Equivalently, via completely prime filters

• Upsets

Upshot: we have points in our locales!
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From locales to spaces: The base set

• (X , τ) ∈ Top

• What is X?

• A set of points

• We want to send a locale to its set of points
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From locales to spaces: The pt map

• Define pt : A 7→ pt(A) where pt(A) is the set of points of A.

Let us look at an example
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From locales to spaces: The pt map (cont.)

p1 p2

1 1

a b a b

0 0

b, 1 1 a, 1 1

0, a 0 0, b 0
p1

p1

p2

p2

Set of points = {p1, p2} 60



From locales to spaces: Getting the topology

• We now have half of the space X = (pt(A), τ)

• How do we get τ?

• Define ϕ : A −→ P(pt(A))

• via a 7→ {p : A −→ 2|p(a) = 1}
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From locales to spaces: Understanding ϕ

1 ϕ(1) = {p1, p2} = pt(A)

a b ϕ(a) = {p1} ϕ(b) = {p2}

0 ϕ(0) = ∅
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From locales to spaces: The whole topology

• Is ϕ(A) a topology?

• pt(A) ∈ ϕ(A)

• ∅ ∈ ϕ(A)

• Left to prove: Closed under finite intersections and arbitrary

unions

• We will use the fact that the image of ϕ is part of a power-set

algebra: ∪ and ∩ are ∨ and ∧
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From locales to spaces: The whole topology (cont.)

Proof
Want to show: ϕ(

∨
S) =

⋃
{ϕ(a) : a ∈ S} for S ⊆ A

Let p ∈
⋃

{ϕ(a) : a ∈ S}

⇔ ∃a ∈ S(p(a) = 1)

⇔
∨

{p(a) : a ∈ S} = 1

⇔ (since p homomorphism) p(
∨

S) = 1

⇔ p ∈ ϕ(
∨

S)

(Johnstone 1982)

We obtain the topology (pt(A), ϕ(A))
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From locales to spaces: The other half of the bridge

We will denote the map A 7→ (pt(A), ϕ(A)) by ’pt’ (following

Johnstone 1982)

Topological Spaces Locales

pt
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The full bridge

Topological Spaces Locales

Ω

pt
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The core of the bridge

Question: Is this an equivalence?

No. Each of the maps are non-surjective on the corresponding

category
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The core of the bridge (cont.)

Top

Sober Spaces

Loc

Spatial Locales
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Spatial locales: Definition

• Spatial locales have enough points

• That is, they can separate any two non-related elements of

the locale via a point-map

Formally:

∀x , y ∈ A(x ≰ y → ∃p(p(x) = 1 ∧ p(y) = 0))
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Spatial locales: A non-example

• Boolean algebras are locales (as structures)

• An atom in a lattice is an element x such that x ̸= 0 and
there is no element y such that 0 < y < x

• minimal non-zero element

• An atomless but complete Boolean algebra is non-spatial
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Sober spaces: Definition

• A closed set is irreducible if it is not the union of two proper

subsets that are closed

• A topological space is sober if every irreducible closed set is

the closure of a single (unique) point
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Sober spaces: Separation axioms

Sober Spaces T0 Spaces

Hausdorff Spaces T1 Spaces

inclusion

inclusion

inclusion

inclusion
No inclusionp
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Soberfication

Topological Spaces Sober Spaces

pt◦Ω

inclusion

Top

Sober Spaces
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”Spatio-fication”

Locales Spatial Locales

Ω◦pt

inclusion

Loc

Spatial locales
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The core of the bridge: Part 2

Spatial locales ∼= Sober spaces

Sober Spaces Spatial Locales

Idea: composition gives isomorphisms via

soberfication/spatio-fication
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The full picture: So far

Topological Spaces Locales

Sober Spaces Spatial Locales

Ω

pt
Restrict Restrict

Ω

pt
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Next steps: By increasing order of insanity

• The BRT

• More dualities

• Heyting algebras: Esakia spaces

• Distributive lattives: Spectral/Coherent spaces

• Nice topology

• Constructive proofs in topology

• Better behaved constructions

• Stone-type dualities

• Generalise the construction via categorical tools

• Topological algebras

• Stone space + Boolean algebra = dual of Sets

• Topos theory

• Locales: natural place for topos theory

• ”The real study of topology” (Grothendieck, via McLarty)
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A final insanity: Condensed mathematics

Living legend Peter Scholze (via Quanta Magazine)

• Massive project to unify large areas of mathematics

• Replace topological spaces by condensed sets
• Condensed set = ”blowing up” a profinite set

• (via ”sheaves” on a site)

• What is a profinite set?

Profinite sets = Stone spaces 78
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