Stone Duality

A bridge between topology and algebra

Alexander Lind, Brendan Dufty, David Alvarez Lombardi 31 January 2023

Motivation

Semantics paradigms

- Algebraic semantics
- Topological semantics

Example: Intuitionistic logic

- Algebraic semantics: Heyting algebras
- Topological semantics: S4 Kripke frames

Basics in both fields

- Topology
- Lattice theory

Basic Lattice Theory

Partial Order

Tuple $\langle X, R \rangle$ such that

- 1. R reflexive
- 2. R transitive
- 3. R antisymmetric

Lattice

Tuple $\langle X, R, \wedge, \vee \rangle$ such that

⟨X, R⟩ a partial order
 x ∧ y = y ∧ x
 x ∨ (y ∨ z) = (x ∨ y) ∨ z
 x ∧ x = x
 x ∨ (y ∧ x) = x

(Commutativity) (Associativity) (Idempotence) (Absorption) Structure-preserving map between lattices (categorically analogous to continuous maps between topological spaces).

Lattice homomorphism

Map $f: L \to L'$ such that

1.
$$f(x \land y) = f(x) \land f(y)$$

2. $f(x \lor y) = f(x) \lor f(y)$

Distributive lattices

Lattice $\langle X, R, \wedge, \vee \rangle$ such that

1.
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

2. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

Complete lattices Lattice $\langle X, R, \land, \lor \rangle$ such that 1. $M \subseteq L \implies \bigwedge M \in L$ 2. $M \subseteq L \implies \bigvee M \in L$ where *L* is our lattice.

• Lattice with additional structure

- Complement
- Top
- Bottom
- Complete semantics for classical logic
 - $\bullet \ \ \mathsf{Complement} \to ``\mathsf{Not}"$
 - Top \rightarrow "True"
 - Bottom \rightarrow "False"

Boolean algebra

Tuple $\langle A, \wedge, \vee, ', 0, 1 \rangle$ such that

1. $\langle A, \wedge, \vee \rangle$ a distributive lattice

2.
$$x \wedge 0 \approx 0, x \vee 1 \approx 1$$

3. $x \wedge x' \approx 0, x \vee x' \approx 1$

(Identities) (Complements) Example: Power sets

Claim: Given set X, $\mathcal{P}(X)$ forms a Boolean algebra $\langle \mathcal{P}(X), \cap, \cup, \overline{\cdot}, \varnothing, X \rangle$. **Proof:** Where U, V, W are arbitrary subsets of X (and, therefore, members of $\mathcal{P}(X)$) ...

1. $\langle \mathcal{P}(X), \cap, \cup, \rangle$ is a distributive lattice 1.1 $\langle \mathcal{P}(X), \subseteq \rangle$ is a partial order 1.2 $U \cap V = V \cap U$ (Commutativity) 1.3 $U \cup (V \cup W) = (U \cup V) \cup W$ (Associativity) 1.4 $U \cap U = U$ (Idempotence) 1.5 $U \cup (V \cap X)$ (Absorption) 1.6 $U \cup (V \cap W) = (U \cup V) \cap (U \cup W)$ (Distributivity) (Identities) 2. $U \cap \emptyset = \emptyset$ 3 $U \cap \overline{U} = \emptyset$ (Complements)

10

Given a Boolean algebra A ...

Filter

2.

Subset $F \subseteq A$ such that

1. 1 ∈ *F*

$$x, y \in F \implies x \land y \in F$$

3. $x \in F \& xRy \implies y \in F$

Ideal

Subset $I \subseteq A$ such that 1. $0 \in I$ 2. $x, y \in I \implies x \lor y \in I$ 3. $y \in I \& xRy \implies x \in I$

Example Filter

Example Ideal

Ultrafilter

Filter *F* that is maximal with respect to the property that $0 \notin F$.

Maximal Ideal

Ideal I that is maximal with respect to the property that $1 \notin F$.

Note that 'ultrafilters' also go by the names 'maximal filters' and 'fluffy filters'.

Boolean Representation Theorem

Our Goal Provide a means of changing between Boolean Algebras and certain Topological Spaces.

Stone Space

A Topological Space which is Hausdorff, Compact, and has a basis of clopens is a **Stone Space**.

Our Construction

Given a Boolean Algebra \mathbf{B} , we define \mathbf{B}^* to be the set of ultrafilters on \mathbf{B} with the topology generated by

$$N_a := \{U \in \mathbf{B}^* \mid a \in U\}$$

for each $a \in \mathbf{B}$

Proof

We know	$\forall U \ a \lor \overline{a} = 1 \in U,$
SO	$a\in U$ or $\overline{a}\in U$
which means	$U ot\in N_a o a ot\in U$
	$ ightarrow \overline{a} \in U$
	$ ightarrow U \in N_{\overline{a}}$

Thus, $\overline{N_a} = N_{\overline{a}}$ and our basis is a basis of clopens.

Proof Let $U_1 \neq U_2$. Pick $a \in U_1 - U_2$. Thus, $a \in U_1$ and $\overline{a} \in U_2$ so $N_a \cap N_{\overline{a}} = \emptyset$, $U_1 \in N_a$, and $U_2 \in N_{\overline{a}}$.

Proof Let $(N_a)_{a \in J}$ for $a \in J \subseteq \mathbf{B}$ be a cover of \mathbf{B}^* . First, we assume that there exists a finite $J_0 \subseteq J$ such that $\bigvee J_0 = 1$.

Proof

Since $\bigvee J_0 = 1$ we know $\forall U \ \bigvee J_0 \in U$ or $\forall U \ a_1 \lor a_2 \ldots \lor a_n \in U$ by maximality $\exists a_i \in U$ so $U \in N_{a_i}$.

Proof Now, let us assume that no finite subset of J has 1 in its join. Thus, $J \subset M$ where M is a maximal ideal.

Proof

Let	$U = \overline{M}$
since	$J \subset M$
we know	$J \cap U = \emptyset$
SO	$orall a \in J \; a ot\in U$
which means	$U ot\in (N_a)_{a\in J}$.

4

Compactness

Full Proof

Let $(N_a)_{a \in J}$ for $a \in J \subseteq \mathbf{B}$ be a cover of \mathbf{B}^* . First, let us assume that for all finite $J_0 \subseteq J$, $\bigvee J_0 \neq 1$. Thus, $J \subseteq M$ where M is a maximal ideal. Let F be an ultrafilter such that $F = \overline{M}$. Since $J \subseteq M$, we know that $F \cap J = \emptyset$. Thus, for all $a \in J$, $F \notin N_a$. This contradicts the fact that $(N_a)_{a \in J}$ is a cover. Thus, there must exist a finite $J_0 \subseteq J$ such that $\bigvee J_0 = 1$.

Furthermore, this means that for all ultrafilters U, $\bigvee J_0 \in U$. Thus, since ultrafilters are maximal, for all $U \in \mathbf{B}^*$, $\exists a \in J_0$ such that $a \in U$ and thus $U \in N_a$. This means that $(N_a)_{a \in J_0}$ is a finite cover of \mathbf{B}^* .

Stone Space to Boolean Algebra

If X is a Stone Space, take the sub-Algebra of the Powerset Algebra that contains only the clopen subsets of X. Call this Boolean Algebra X^* .

- 1. We want to show that $\boldsymbol{B}\cong\boldsymbol{B}^{**}$
- 2. and $X^{**} \cong X$.

Isomorphism Define $f : a \to N_a$. We want to show this is an isomorphism.

Homomorphism

$$U \in N_a \cup N_b \iff U \in N_a \text{ or } U \in N_b$$
$$\iff a \in U \text{ or } b \in U$$
$$\iff a \lor b \in U$$
$$\iff U \in N_{a \lor b}$$

Injectivity

Proof Let $a \neq b$.

Thus	$(a \land b) \lor \overline{(a \lor b)} \neq 0$
SO	$(a \wedge b) \vee \overline{(a \vee b)} \not\in M.$
Let	$U = \overline{M}$
by closure	$a \wedge b \in U$ and $\overline{(a \vee b)} \in U$
SO	$N_a eq N_b.$

Proof Let N be clopen in **B**^{*}. Thus N has an open cover (N is open), and N is compact (N is closed). Thus, $N = N_{a_1 \vee a_2 \dots \vee a_n} = N_b$.

Homomorphism + Injectivity + Surjectivity = Isomorphism

Homeomorphism Define $f : x \to \{N \in X^* \mid x \in N\}$.

Injectivity f(x) is an ultrafilter on X^* and from X being Hausdorff, f is injective.
Proof X^{**} is a topology of ultrafilters on X^* . Take $U \in X^*$. This has the finite intersection property, so by compactness $\bigcap U \neq \emptyset$. Take $x \in \bigcap U$, we know that $U \subset f(x)$, so U = f(x) by maximality.

Clopens in X^{**} Using our definitions: $\{U \mid N \in U\}$ where N is clopen in X.

Open $f(N) = \{U \mid \exists x \in N \ f(x) = U\}$ which mean $f(N) = \{U \mid N \in U\}$ (since N is clopen).

Continuous $f^{-1}{U \mid N \in U} = {x \in X \mid f(x) = U} = {x \in X \mid x \in N} = N.$

- 1. Powerset Algebra provides an intuition about algebraic spaces.
- 2. The set of clopens forms an algebra and an ultrafilter.
- 3. Our "stone" operation is a duality/equivalence.

Locale Theory

- The Boolean Representation Theorem is hinting at a bridge
- What is this bridge?
- Can we obtain interesting results?
- A warning: we will not get to the **BRT** in this talk
- Reason: things are slightly complicated

The full picture

We will cover the beginning

The rest is left as an exercise

Concepts in category theory

Category

A collection of mathematical objects of the same type paired with the collection of structure-preserving maps between them.

Examples:

- (Groups, group homomorphisms)
- (Sets, functions)
- (Posets, monotone maps)

Dual

Given a category C, the *dual* of C (denoted C^{op} for 'opposite'), is C with all of the arrows flipped. **Note:** These are not set-theoretic function inverses!

Equivalence

Two categories are *equivalent* if they are indistinguishable, modulo presentation. **Note:** *If they are as in the proof of the* **BRT**.

From spaces to locales: Spaces

- Topological space $\mathbf{X} = (X, \tau)$
 - $\mathbf{X} \mapsto X$ "Forget"
 - $\mathbf{X} \mapsto \tau$ "Lattice of opens"
 - Do we keep "enough" topological data?
- Top
 - Category of topological spaces
 - Objects: topological spaces
 - Maps: continuous maps

From spaces to locales: Frames and Ω

- Define $\Omega : \mathbf{X} \mapsto \tau$
- Sends each topology on a space to its "lattice of opens"
- Is this an algebraic object? Specifically: a lattice?
 - Yes, and yes!
- Since $\emptyset, \{X\} \in \tau$, we have 0 and 1
- $\bullet\,$ Form the lattice-like structure under \subseteq as the \leq relation
 - This gives us a (bounded) partial order
- τ is closed under finite intersections and arbitrary unions Therefore, the lattice-like structure is closed under finite meets and arbitrary joins
- Hence, a lattice

- We define a *frame* to be a *complete* lattice such that it is infinitely join-distributive: a ∧ (∨ S) = ∨{a ∧ s : s ∈ S}
 - Compare this with a topology being closed under arbitrary unions and finite intersections
- We will call the category of frames and frame-homomorphisms 'Frm'

From spaces to locales: Frames and Ω (cont.)

• Loc

- The *dual* of **Frm**
- "homomorphisms" in Loc are called 'continuous maps'
 - Hints at the topological connection
- The natural corresponding place for the "lattice of opens" of spaces

Complete Heyting Algebras

Heyting homomorphisms

Frames

Locales

Frame homomorphisms | Continuous maps

From spaces to locales: Ω

Key question: can we go back?

- To go from a locale to a space, we need points again
- Since (topological) spaces have points

- Define a *point* in a locale, A, as a (continuous) map: $2 \longrightarrow A$
- Easier to see as a frame homomorphism
- $\mathbf{A} \longrightarrow \mathbf{2}$
- Compare with Boolean algebras!

Another motivation

Points in Set

Points in **Top**

$$(\{*\},\tau_0) \xrightarrow{x} (X,\tau)$$

(Where τ_0 is the trivial topology)

- Always: $\Omega((\{*\}, \tau_0)) = 2$
- Let $\Omega((X, \tau)) = \mathbf{A} \in \mathbf{Loc}$.

Points in Loc

Points in Frm

What are these points, more precisely?

- Points = Homomorphisms
- Will often look from the "Frame perspective"
- Each point corresponds to a choice of principal prime ideals
 - Downsets
- Equivalently, via completely prime filters
 - Upsets

Upshot: we have points in our locales!

- $(X, \tau) \in \mathsf{Top}$
- What is X?
 - A set of *points*
- We want to send a locale to its set of points

• Define $pt : \mathbf{A} \mapsto pt(\mathbf{A})$ where $pt(\mathbf{A})$ is the set of points of \mathbf{A} .

Let us look at an example

From locales to spaces: The *pt* map (cont.)

60

- We now have half of the space $\mathbf{X} = (pt(\mathbf{A}), \tau)$
- How do we get τ ?
- Define $\phi : \mathbf{A} \longrightarrow \mathcal{P}(pt(\mathbf{A}))$

• via
$$a \mapsto \{p : \mathbf{A} \longrightarrow \mathbf{2} | p(a) = 1\}$$

From locales to spaces: Understanding ϕ

- Is $\phi(\mathbf{A})$ a topology?
 - $pt(A) \in \phi(A)$
 - $\emptyset \in \phi(\mathbf{A})$
 - Left to prove: Closed under finite intersections and arbitrary unions
 - We will use the fact that the image of ϕ is part of a power-set algebra: \cup and \cap are \vee and \wedge

From locales to spaces: The whole topology (cont.)

Proof

Want to show: $\phi(\bigvee S) = \bigcup \{\phi(a) : a \in S\}$ for $S \subseteq A$

(Johnstone 1982)

We obtain the topology $(pt(\mathbf{A}), \phi(\mathbf{A}))$

We will denote the map $\mathbf{A} \mapsto (pt(\mathbf{A}), \phi(\mathbf{A}))$ by 'pt' (following Johnstone 1982)

Question: Is this an equivalence?

No. Each of the maps are non-surjective on the corresponding category
The core of the bridge (cont.)

- Spatial locales have enough points
- That is, they can separate any two non-related elements of the locale via a point-map

Formally:

 $\forall x, y \in \mathbf{A}(x \nleq y \rightarrow \exists p(p(x) = 1 \land p(y) = 0))$

- Boolean algebras are locales (as structures)
- An *atom* in a lattice is an element x such that x ≠ 0 and there is no element y such that 0 < y < x
 - minimal non-zero element
- An atomless but complete Boolean algebra is non-spatial

- A closed set is *irreducible* if it is not the union of two proper subsets that are closed
- A topological space is *sober* if every irreducible closed set is the closure of a single (unique) point

Spatial locales \cong Sober spaces

The full picture: So far

Next steps: By increasing order of insanity

- The **BRT**
- More dualities
 - Heyting algebras: Esakia spaces
 - Distributive lattives: Spectral/Coherent spaces
- Nice topology
 - Constructive proofs in topology
 - Better behaved constructions
- Stone-type dualities
 - Generalise the construction via categorical tools
- Topological algebras
 - Stone space + Boolean algebra = dual of Sets
- Topos theory
 - Locales: natural place for topos theory
 - "The real study of topology" (Grothendieck, via McLarty)

A final insanity: Condensed mathematics

Living legend Peter Scholze (via Quanta Magazine)

- Massive project to unify large areas of mathematics
- Replace topological spaces by condensed sets
- Condensed set = "blowing up" a profinite set
 - (via "sheaves" on a site)
- What is a profinite set?

Profinite sets = **Stone spaces**

Fin