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Motivation



Semantics paradigms

e Algebraic semantics

e Topological semantics
Example: Intuitionistic logic

o Algebraic semantics: Heyting algebras

e Topological semantics: S4 Kripke frames



First steps

Basics in both fields

e Topology
e Lattice theory



Basic Lattice Theory



Partial orders

Tuple (X, R) such that

R reflexive
R transitive

R antisymmetric



Lattice
Tuple (X, R, A, V) such that

1. (X, R) a partial order

2. xANy=yAx (Commutativity)
3. xV(yvz)=(xVy)Vz (Associativity)
4. x ANx=x (Idempotence)
5. xV(yAx)=x (Absorption)



Lattice homomorphisms

Structure-preserving map between lattices (categorically analogous

to continuous maps between topological spaces).

Lattice homomorphism
Map f : L — L’ such that
L f(xAy)=1f(x)nf(y)
2. f(xVy)=1f(x)Vi(y)



Important lattice sub-types

Complete lattices
Lattice (X, R,A,V) such that Lattice (X, R, A, V) such that

xN(yVz) = (xAy)V(xnz) 1. MCL = AMel
xV(yAnz) = (xVy)A(xVz) 2. MCL = \VMel

where L is our lattice.



Boolean algebras

e Lattice with additional structure
e Complement
e Top
e Bottom
e Complete semantics for classical logic
e Complement — "Not”
e Top — "True"
e Bottom — "False”



Boolean algebras (cont.)

Tuple (A, A,V,,0,1) such that

(A, A, V) a distributive lattice
xN0~0,xV1~x1 (Identities)

xAX' =0,xVx =1 (Complements)



Boolean algebras (cont.)

Example: Power sets

Claim: Given set X, P(X) forms a Boolean algebra
(P(X),n,u, =, &, X).

Proof: Where U, V, W are arbitrary subsets of X (and, therefore,
members of P(X)) ...

1. (P(X),N,U,) is a distributive lattice
1.1 (P(X),C) is a partial order

12 Unv=Vvnu (Commutativity)
13 Vu(Vuw)=((UuVvyuw (Associativity)
14 UnUu=U (Idempotence)
15 Vu(VnX) (Absorption)
1.6 Uu(VnW)=(UuvVv)nUuw) (Distributivity)
2. Ung=0 (Identities)
3. UnU=o (Complements) 1



Filters & ideals

Given a Boolean algebra A ...

Subset F C A such that

leF
x,yeF = xAnyeF
xeF&xRy — yeF

Ideal
Subset | C A such that

1.0el
2. x,yel = xVvyel
3. yel & xRy = x€l
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Ultrafilters & maximal ideals

Maximal ldeal

Filter F that is maximal with Ideal / that is maximal with
respect to the property that respect to the property that
0¢F. 1¢F.

Note that ‘ultrafilters’ also go by the names ‘maximal filters’ and

‘

filters’.
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Boolean Representation Theorem



The Theorem

Our Goal
Provide a means of changing between Boolean Algebras and

certain Topological Spaces.

ii5)



Stone Space
A Topological Space which is Hausdorff, Compact, and has a basis

of clopens is a Stone Space.
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Proof Structure

Boolean Algebra and Stone Space

Ultrafilter Stone Space Clopen Algebra

Stone Space Boolean Algebra
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Algebra Space

Our Construction
Given a Boolean Algebra B, we define B* to be the set of
ultrafilters on B with the topology generated by

N, ={UeB"|ac U}

for each a € B
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Basis of Clopens

Proof
We know YUava=1eU,
so acUoracl
which means UZgN,—ag U
—aeU
— U e N3

Thus, N, = N5 and our basis is a basis of clopens.
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Hausdorff

Proof
Let U; # Us. Pick a€ Uy — Us. Thus, a€ U; and 3 € Us so

Naﬁ N§:®, U1 S Na, and U2 & Ng.
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Proof
Let (N,)aey for a € J C B be a cover of B*. First, we assume that

there exists a finite Jy C J such that \/ Jp = 1.

21



Proof
Since \/ Jb=1
we know YU \/Jo e U
or VYU aiVa...Va,e U
by maximality daje U

so UeN,,.

22



Proof .
Now, let us assume that no finite subset of J has 1 in its join.

Thus, J C M where M is a maximal ideal.
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Proof
Let Uu=m
since Jc M
we know JNU=10
o) Yae Jag U
which means Uég (Na)aey -
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Full Proof
Let (N,)aey for a € J C B be a cover of B*. First, let us assume

that for all finite Jo C J, \/ Jo # 1. Thus, J C M where M is a
maximal ideal. Let F be an ultrafilter such that F = M. Since

J C M, we know that FNJ = (. Thus, forallac J, F ¢ N,. This
contradicts the fact that (N,),cy is a cover. Thus, there must
exist a finite Jo C J such that \/ Jp = 1.

Furthermore, this means that for all ultrafilters U, \/ Jy € U.
Thus, since ultrafilters are maximal, for all U € B*, Ja € Jy such
that a € U and thus U € N,. This means that (N,).cy, is a finite
cover of B*.
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Space to Algebra

Stone Space to Boolean Algebra
If X is a Stone Space, take the sub-Algebra of the Powerset

Algebra that contains only the clopen subsets of X. Call this
Boolean Algebra X*.
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Proving the Duality

1. We want to show that B = B**
2. and X** = X.
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Isomorphism
Define f : a — N,. We want to show this is an isomorphism.

Homomorphism
Ue NJUN <= Ue€ Nyor Ue N,y
< aclUorbelU

< avbelU
<— U € Ny
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Injectivity

Proof
Let a # b.

Thus (anb)Vv(avhb)#£0
so (anb)v(aVvb)¢g M.
Let U=m
by closure arnbe Uand(aVvb)eU
o) N, #£ Np.
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Proof
Let N be clopen in B*. Thus N has an open cover (N is open),

and N is compact (N is closed). Thus, N = Nava, va, = Np.
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Homomorphism
+
Injectivity
+
Surjectivity

[somorphism
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Homeomorphism
Define f : x — {N € X* | x € N}.

Injectivity
f(x) is an ultrafilter on X* and from X being Hausdorff, f is
injective.
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Proof
X** is a topology of ultrafilters on X*. Take U € X*. This has the

finite intersection property, so by compactness (U # (). Take
x € (U, we know that U C f(x), so U = f(x) by maximality.
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Homeomorphism

Clopens in X**
Using our definitions: {U | N € U} where N is clopen in X.

Open
f(N)={U| 3Ix € N f(x) = U} which mean f(N)={U | N € U}
(since N is clopen).

Continuous
fFFHU N e Ut ={xe X |f(x)=U}={xe X | xeN}=N.
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1. Powerset Algebra provides an intuition about algebraic spaces.
2. The set of clopens forms an algebra and an ultrafilter.

3. Our “stone” operation is a duality/equivalence.
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Locale Theory




Bridges in mathematics

Static vs Dynamic unification (Caramello)

Algebras
,”//7 g\\\\
Boolean Algebras Generalisation Heyting Algebras
___-——-> Locales «-___
T Ty
Topological Spaces Bridges Lattices
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Bridges in mathematics (cont.)

The Boolean Representation Theorem is hinting at a bridge

What is this bridge?

Can we obtain interesting results?

e A warning: we will not get to the BRT in this talk

Reason: things are slightly complicated
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The full picture

Q
Topological Spaces — 4T locales
D A —
pt
Restrict Restrict
Q
- .
Sober Spaces A Spatial Locales
pt
Restrict Restrict
Q
—_—
Coherent Spaces Coherent Locales
spec
Restrict Restrict
Distributive Lattices
Q
e,
Stone Spaces Boolean Algebras
Spec
Restrict Restrict
i
Ind—Pro Completion'y, Stone Bool CABA

%

Sets
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We will cover the beginning

The rest is left as an exercise
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Concepts in category theory

A collection of mathematical
objects of the same type
paired with the collection of
structure-preserving maps
between them.

Examples:
(Groups, group
homomorphisms)
(Sets, functions)

(Posets, monotone maps)

Dual

Given a category C, the dual
of C (denoted CP for
‘opposite’), is C with all of the
arrows flipped.

Note: These are not
set-theoretic function inverses!

Equivalence

Two categories are equivalent
if they are indistinguishable,
modulo presentation.

Note: If they are as in the

proof of the BRT.
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From spaces to locales: Spaces

e Topological space X = (X, 7)
o X X "Forget”
e X+ 7 "Lattice of opens”

e Do we keep "enough” topological data?

e Top

e Category of topological spaces
e Objects: topological spaces
e Maps: continuous maps
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From spaces to locales: Frames and (2

e Define Q: X— 1

e Sends each topology on a space to its "lattice of opens”
e Is this an algebraic object? Specifically: a lattice?

e Yes, and yes!

e Since ),{X} € 7, we have 0 and 1
e Form the lattice-like structure under C as the < relation

e This gives us a (bounded) partial order

e 7 is closed under finite intersections and arbitrary unions
Therefore, the lattice-like structure is closed under finite
meets and arbitrary joins

e Hence, a lattice
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From spaces to locales: Frames and Q2 (cont.)

o We define a frame to be a complete lattice such that it is
infinitely join-distributive: aA (\/S) = \V{aAs:se S}
e Compare this with a topology being closed under arbitrary
unions and finite intersections

o We will call the category of frames and frame-homomorphisms
"Frm’
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From spaces to locales: Frames and Q2 (cont.)

Q

T

Topological Spaces Frames
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From spaces to locales: Locales

e Loc
e The dual of Frm
e "homomorphisms” in Loc are called 'continuous maps'
e Hints at the topological connection
e The natural corresponding place for the "lattice of opens” of

spaces
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From spaces to locales: Overview of structures

Complete Heyting Algebras Frames Locales
Heyting homomorphisms Frame homomorphisms | Continuous maps
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From spaces to locales: Q

Q

/_\

Topological Spaces Locales
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From locales to spaces

Key question: can we go back?
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From locales to spaces: points

e To go from a locale to a space, we need points again

e Since (topological) spaces have points
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From locales to spaces: points (cont.)

Define a point in a locale, A, as a (continuous) map: 2 — A

Easier to see as a frame homomorphism

e A—2

e Compare with Boolean algebras!
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From locales to spaces: points (cont.)

Another motivation

Points in Set

Bl



From locales to spaces: points (cont.)

Points in Top

({+},70) : (X, 7)

(Where 1y is the trivial topology)

52



From locales to spaces: points (cont.)

o Always: Q(({*},70)) =2
o Let Q((X,7)) = A € Loc.
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From locales to spaces: points (cont.)

Points in Loc

Q({*},70) = 2 & A
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From locales to spaces: points (cont.)

Points in Frm
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TOP LocC FRM

2 Q 1\9(2) Dualize I/Q(a)op
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From locales to spaces: Points (cont.)

What are these points, more precisely?

Points = Homomorphisms

Will often look from the "Frame perspective”

Each point corresponds to a choice of principal prime ideals

e Downsets

Equivalently, via completely prime filters

e Upsets

Upshot: we have points in our locales!
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From locales to spaces: The base set

° (X,T) € Top
e What is X7?

e A set of points

e We want to send a locale to its set of points
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From locales to spaces: The pt map

e Define pt : A — pt(A) where pt(A) is the set of points of A.

Let us look at an example
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From locales to spaces: The pt map (cont.)

N TN
oINS

b,1 A 1 a1 @ 1

0,a i 0 0,b i 0

Set of points = {p1, p2} 60



From locales to spaces: Getting the topology

e We now have half of the space X = (pt(A), 7)

e How do we get 77
e Define ¢ : A — P(pt(A))
e viaa— {p: A—2|p(a) =1}
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From locales to spaces: Understanding ¢

(1) = {p1, p2} = pt(A)

/ \b é(a)—{pl}/ \o(b {p2}
\ / —

#(0) =10
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From locales to spaces: The whole topology

e Is ¢(A) a topology?
o pt(A) € 6(A)
o D eg(A)
e Left to prove: Closed under finite intersections and arbitrary
unions
e We will use the fact that the image of ¢ is part of a power-set
algebra: U and N are V and A
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From locales to spaces: The whole topology (cont.)

Proof
Want to show: ¢(\/ S) =U{¢(a) :a€ S} for SCA

Let pe| J{¢(a):a€ S}
= dae S(p(a) =1)
& \{p(a):ac S} =1
& (since p homomorphism) p(\/ S)=1
& pea(\/S)

(Johnstone 1982)

We obtain the topology (pt(A), ¢(A)) -



From locales to spaces: The other half of the bridge

We will denote the map A — (pt(A), ¢(A)) by 'pt’ (following
Johnstone 1982)

Topological Spaces Locales

\_/

pt
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The full bridge

Q

T

Topological Spaces Locales

\_/

pt
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The core of the bridge

Question: Is this an equivalence?

No. Each of the maps are non-surjective on the corresponding
category
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The core of the bridge (cont.)

Sober Spaces Spatial Locales
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Spatial locales: Definition

e Spatial locales have enough points

e That is, they can separate any two non-related elements of
the locale via a point-map

Formally:

Vx,y € A(x £ y — 3p(p(x) =1 A p(y) = 0))
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Spatial locales: A non-example

e Boolean algebras are locales (as structures)
e An atom in a lattice is an element x such that x # 0 and
there is no element y such that 0 < y < x

e minimal non-zero element

e An atomless but complete Boolean algebra is non-spatial
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Sober spaces: Definition

e A closed set is irreducible if it is not the union of two proper

subsets that are closed

e A topological space is sober if every irreducible closed set is
the closure of a single (unique) point
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Sober spaces: Separation axioms

Sober Spaces —n<lusion T Spaces

. . No inclusion . i
inclusion inclusion

HausdorfF Spaces T1 Spaces

inclusion
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pto2
_—
Topological Spaces Sober Spaces

“«— @ >
inclusion
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Qopt
s
Locales Spatial Locales
_ >

inclusion

</> Spatial locales
Loc
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The core of the bridge: Part 2

Spatial locales = Sober spaces

Sober Spaces Spatial Locales

Idea: composition gives isomorphisms via
soberfication /spatio-fication
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The full picture: So far

Q
Topological Spaces Locales
-~
pt
Restrict Restrict
Q
/_\
Sober Spaces Spatial Locales
v
pt
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Next steps: By increasing order of insanity

e The BRT
e More dualities

e Heyting algebras: Esakia spaces

e Distributive lattives: Spectral/Coherent spaces
e Nice topology

e Constructive proofs in topology

e Better behaved constructions
e Stone-type dualities

e Generalise the construction via categorical tools
e Topological algebras

e Stone space + Boolean algebra = dual of Sets
e Topos theory

e Locales: natural place for topos theory
e "The real study of topology” (Grothendieck, via McLarty)
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A final insanity: Condensed mathematics

Living legend Peter Scholze (via Quanta Magazine)

Massive project to unify large areas of mathematics

Replace topological spaces by condensed sets
Condensed set = "blowing up” a profinite set
e (via "sheaves" on a site)

What is a profinite set?

Profinite sets = Stone spaces 78
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