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Kneser graph K (n, k)
• Vertices: k-subsets of {1, ..., n}
• Edge between vertex A and B if A ∩ B = ∅

⇒ n ≥ 2k

Figure: Kneser graph K(5, 2), credits: Proofs from the BOOK, p. 251
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Graph coloring

• No two connected vertices are colored with same color
• χ(G): miminum number of colors needed for coloring of G

v1

v4 v5 v6

v2 v3

(a) Graph G

v1

v4 v5 v6

v2 v3

(b) 4-coloured graph G

Figure: 4-colouring of a graph
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3-coloring of Kneser graph K (5, 2)

Figure: Coloring of K(5, 2), credits: Proofs from the BOOK, p. 251

• Reformulation of graph coloring of a Kneser graph K (n, k):
⇒ partition of vertices V (n, k) in V1 ∪ ... ∪ Vd+2 and each Vi is not connected
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Kneser conjecture

Possible coloring: Take n := 2k + d , d ≥ 0
For i ∈ {1, ..., d + 1} with Vi containing all k-sets that have i as smallest element.
The remaining k-sets are contained in the set {d + 2, d + 3, ..., 2k + d}, which
has only 2k − 1 elements

⇒ d + 2-coloring

But is this sufficient?

Theorem (Kneser conjecture [AZ98])

χ(K (2k + d , k)) = d + 2
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Topology to the Rescue

• combinatorial problem

: induction /
• (23 year later) László Lovász [Lov78]: topology ,
• improved by Imre Bárány [Bár78] and Joshua Greene [Gre02]

Figure: Outline of the Proofs to Come
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• (23 year later) László Lovász [Lov78]: topology ,
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Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam theorem [Bor33])
For every continuous map f : Sd → Rd from d-sphere to d-space, there are
antipodal points x∗,−x∗ that are mapped to the same point f (x∗) = f (−x∗).

Where a d-sphere is defined as a d-dimensional object in d + 1-dimensional space:
Sd := {x ∈ Rd+1 : |x | = 1}

Figure: Unit Circle S1
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Proof Borsuk-Ulam (d = 1)

Theorem (Borsuk-Ulam theorem [Bor33])
For every continuous map f : Sd → Rd from d-sphere to d-space, there are
antipodal points x∗,−x∗ that are mapped to the same point f (x∗) = f (−x∗).

Proof
Given a continuous function f : S1 → R, we define g : S1 → R as follows:

g(x) := f (x) − f (−x)

Observe that g(−x) = f (−x) − f (x) = −(f (x) − f (−x)) = −g(x) and g
continuous because sum of continuous functions. Wlog assume g(x) > 0 and thus
g(−x) < 0. As g continuous on S1 from −x to x , and g(−x) < 0 < g(x) by the
Intermediate Value Theorem, there exists x∗ on S1 s.t. g(x∗) = 0. □
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Borsuk-Ulam in General

• Borsuk-Ulam holds for any integer d
• d = 2: unit sphere (our world) to 2d-plane

Figure: ”S2 sphere”

• antipodal points (opposite sides) where pressure and temperature are exact same

• One more step to use this topological result for our graph theory problem
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Proof of Lyusternik–Shnirel’man theorem (1)

Theorem (Lyusternik–Shnirel’man theorem [L L30])
If the d-sphere Sd is covered by d + 1 sets,

Sd = U1 ∪ ... ∪ Ud ∪ Ud+1,

such that each of the first d sets U1, ..., Ud is sphered + 1 sets contains a pair of
antipodal points x∗, −x∗.

Proof
Assume for contradiction that none of the Ui ’s contain antipodal points. Define
f : Sd → Rd as

f (x) := (dist(x , U1), dist(x , U2), ..., dist(x , Ud))

As f continuous, Borsuk-Ulam yields existence antipodal x∗, −x∗ s.t.
f (x∗) = f (−x∗). As Ud+1 does not contain both x∗ and −x∗, wlog, there is some
Uk (1 ≤ k ≤ d) s.t. x∗ ∈ Uk . This means dist(x∗, Uk) = 0, and thus
dist(−x∗, Uk) = 0. (continued on next slide)
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Proof of the Lyusternik–Shnirel’man theorem (2)

Proof
Assume for contradiction that none of the Ui ’s contain antipodal points. Define
f : Sd → Rd as

f (x) := (dist(x , U1), dist(x , U2), ..., dist(x , Ud))

As f continuous, Borsuk-Ulam yields existence antipodal x∗, −x∗ s.t.
f (x∗) = f (−x∗). As Ud+1 does not contain both x∗ and −x∗, wlog, there is some
Uk (1 ≤ k ≤ d) s.t. x∗ ∈ Uk . This means dist(x∗, Uk) = 0, and thus
dist(−x∗, Uk) = 0.
If Uk is closed, then −x∗ ∈ Uk . �

If Uk is open, then −x∗ ∈ Ūk . We have Ūk ⊆ Sd \ (−Uk) because closed subset
of Sd that contains Uk . This means −x∗ /∈ −Uk . But then, x∗ /∈ Uk . � □
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Proof of the Kneser conjecture (1)

Theorem (Kneser conjecture [AZ98])

χ(K (2k + d , k)) = d + 2

Proof
• Take 2k + d points such that no d + 2 lay on a hyperplane through the center
of Sd+1

• Assume partition V1 ∪ ... ∪ Vd+1
• Define:
Oi := {x ∈ Sd+1 | the open hemisphere Hx with pole x contains a k-set fromVi}
C := Sd+1 \ (O1 ∪ ... ∪ Od+1)
⇒ all Oi with C cover Sd+1

Figure: Credits: Proofs from the BOOK, p. 251
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Proof of the Kneser conjecture (2)

Proof
• Lyusternik–Shnirel’man
⇒ antipodal points x∗, −x∗ in Oi for one i or in C

Case 1: x∗, −x∗ ∈ C
⇒ hemispheres Hx∗ , H−x∗ contain less than k points
⇒ at least d + 2 points on equator
� but we chose them not to be

Figure: Credits: Proofs from the BOOK, p. 251
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Proof of the Kneser conjecture (3)

Proof
Case 2: x∗, −x∗ ∈ Oi

• exists k-sets A, B ⊆ Vi with A ⊆ Hx∗ and B ⊆ H−x∗

⇒ A, B disjoint
⇒ exists edge from A to B
⇒ Contradiction! So χ(K (2k + d , k)) cannot equal d + 1... □

Figure: Credits: Proofs from the BOOK, p. 251
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Wrapping Up

• Topology useful in unexpected places
• Beginnings of Topological Graph Theory
• Matousek [Mat04] also proved the conjecture via a combinatorial argument
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[Mat04] Jǐŕı Matouek. “A Combinatorial Proof of Kneser’s Conjecture*”. In:
Combinatorica 24 (2004), pp. 163–170.

Minke Verweij and Hannah Van Santvliet References January 31, 2023 18 / 19

https://doi.org/10.1080/00029890.2002.11919930
https://doi.org/10.1080/00029890.2002.11919930
https://doi.org/10.1080/00029890.2002.11919930


THANKS FOR LISTENING!

(⇔ THE END)

⇒ QUESTIONS?
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